
 1

 Team Development with
Visual Studio Team
Foundation Server

BETA 1.0

Feedback/Comments: TFSGuide@microsoft.com

Team Development with Visual
Studio Team Foundation
Server

patterns & practices

J.D. Meier

Jason Taylor
Alex Mackman

Prashant Bansode
Kevin Jones

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory,
MSDN, Visual Basic, Visual C++, Visual C#, Visual Studio, and Win32 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of
their respective owners.

Introduction
This guide shows you how to get the most out of Visual Studio 2005 Team Foundation
Server to help improve the effectiveness of your team-based software development.
Whether you are already using Team Foundation Server or adopting from scratch, you’ll
find guidance and insights you can tailor for your specific scenarios.

The information in this guide is based on practices learned from customer feedback and
product support, as well as experience from the field and in the trenches. The guidance is
task-based and presented in the following parts.

• Part I, “Fundamentals,” gives you a quick overview of team development with

Team Foundation Server. You’ll see the big picture in terms of your software
development environment, including the development and test environment. You’ll
also learn the basic architecture of Team Foundation Server.

• Part II, “Source Control,” shows you how to structure your source code and
manage dependencies. It also shows you how to determine a branching and merging
strategy if you need isolation for your development efforts.

• Part III, “Builds,” shows you how to set up team builds, how to produce continuous
integration builds for your development team, and how to drop scheduled builds to
your test team. It also discusses common problems and how to work around them.

• Part IV, “Large Project Considerations,” show you additional considerations you
need to deal with when working with large projects.

• Part V, “Project Management,” shows you how to use Team Foundation Server
work items, areas and iterations to streamline your development process regardless of
what project management approach you use.

• Part VI, “Process Templates,” shows you how to get the most out of the process
templates and process guidance that is supplied with Team Foundation Server out of
the box. It also shows how you can customize the process templates, and make
modifications to work items and workflow to map to the software engineering process
your team is already using.

• Part VII, “Reporting,” shows you how all of the other Team Foundation Server
components integrate their data store into a common reporting mechanism. You’ll
learn how to use the default reports as well as how to build your own custom reports.

• Part VIII, “Setting Up and Maintaining the Team Environment,” removes the
mystery from Team Foundation Server deployment. You’ll learn how to choose
between a single server and multiple server deployment. You’ll also learn how to
support remote development teams and how to maximize Team Foundation Server
performance.

Team Development
There are many elements, processes, and roles that combine to enable successful team-
based software development projects. This guide focuses on:
• The development process

• The build process
• The project management process

The following diagram illustrates the relationship between typical software development
processes relating to team development and how Team Foundation Server can be
leveraged to provide horizontal foundational support for these initiatives.

Scope of This Guide
This guide is focused on deploying Team Foundation Server and using it effectively for
source control, build automation, work item management, and process management.

The following diagram outlines a sample logical implementation of Team Foundation
Server as it relates to the roles most common to the software engineering and
development lifecycle.

Why We Wrote This Guide
From our own experience with Team Foundation Server and through conversations with
customers and Microsoft employees who work in the field, we determined there was
demand for a guide that would show how to use Team Foundation in the real world.
While there is information in the product documentation, in blog posts and in forums,
there has been no single place to find proven practices for the effective use of Team
Foundation Server in the context of a development project under real world constraints.

Who Should Read This Guide
This guide is targeted at providing individuals involved in the software development
process with the resources, patterns and practices for creating an effective team
development environment. The following are examples of roles that would benefit from
this guidance:

• A development team that wants to adopt Team Foundation.
• A project manager looking to get the most out of Team Foundation, with regard to

managing projects and development efforts, providing status of software development
initiatives and providing feedback to business stakeholders.

• Interested parties investigating the use of Team Foundation but don’t know how well
it would work for their development scenarios and team constraints..

• Individuals tasked with planning a deployment and installing Team Foundation.

How To Use This Guide
The guide is divided into parts based on the order we see most teams think about and
adopt Team Foundation. If you are in the process of adopting Team Foundation you’ll
probably want to read the entire guide from start to finish. If you are interested in using
Team Foundation for a particular use, such as Source Control or Team Build, you can
restrict your reading to just those sections. Use the main chapters to learn concepts and
guiding principles. Use the appendix of “Guidelines”, “Practices”, “How To” articles and
“Questions and Answers” to dive into implementation details. This separation allows
you to understand the topics first and then dive into details as you see fit.

Organization of This Guide
You can read this guide from end to end, or you can read the chapters you need for your
job.

Parts
The guide is divided into eight parts:
• Part I, Fundamentals
• Part II, Source Control
• Part III, Builds
• Part IV, Big Team Considerations
• Part V, Project Management
• Part VI, Process Guidance
• Part VII, Reporting
• Part VIII, Setting Up and Maintaining the Team Environment

Part I, Fundamentals
• Ch 01 - Introducing the Team Environment
• Ch 02 - Team Foundation Server Architecture

Part II, Source Control
• Ch 03 - Structuring Projects and Solutions in Source Control
• Ch 04 - Structuring Projects and Solutions in Team Foundation Source Control
• Ch 05 - Defining Your Branching and Merging Strategy
• Ch 06 - Managing Source Control Dependencies in Visual Studio Team System

Part III, Builds
• Ch 07 - Team Build Explained
• Ch 08 - Setting Up Continuous Integration with Team Build
• Ch 09 - Setting Up Scheduled Builds with Team Build

Part IV, Large Project Considerations
• Ch 10 - Large Project Considerations

Part V, Project Management
• Ch 11 - Project Management Explained
• Ch 12 - Work Items Explained
• Ch 13 – MSF Agile Projects

Part VI, Process Templates
• Ch 14 - Process Templates Explained

Part VII, Reporting
• Ch 15 - Reporting Explained

Part VIII, Setting Up and Maintaining the Team Environment
• Ch 16 - Team Foundation Server Deployment
• Ch 17 - Providing Internet Access to Team Foundation Server

Guidelines
• Guidelines: Visual Studio 2005 Team Foundation Server Source Control

Practices
• Practices at a Glance: Team Foundation Server Source Control

Questions and Answers
• Questions and Answers: Team Foundation Server Source Control and Versioning

Resources
• Visual Studio 2005 Team Foundation Server

“How To” Articles
• How To: Add a New Developer To Your Project in Visual Studio Team Foundation

Server
• How To: Automatically Run Code Analysis with Team Build in Visual Studio Team

Foundation Server
• How To: Create a Custom Report for Visual Studio Team Foundation Server
• How To: Create a Risk Over Time Report for Visual Studio Team Foundation Server
• How To: Customize a Report in Visual Studio Team Foundation Server
• How To: Customize a Process Template in Visual Studio Team Foundation Server
• How To: Manage Projects in Visual Studio Team Foundation Server
• How To: Migrate Source code to Team Foundation Server from Visual Source Safe
• How To: Perform a Baseless Merge in Visual Studio Team Foundation Server
• How To: Setup a Continuous Integration Build in Visual Studio Team Foundation

Server

• How To: Setup a Scheduled Build in Visual Studio Team Foundation Server
• How To: Create Custom Check-in Policies for Visual Studio Team Foundation Server
• How To: Create Your Source Tree in Visual Studio Team Foundation Server
• How To: Structure ASP.NET Applications in Visual Studio Team Foundation Server
• How To: Structure Windows Applications in Visual Studio Team Foundation Server
• How To: Structure Your Source Control Folders in Visual Studio Team Foundation

Server

Feedback and Support
We have made every effort to ensure the accuracy of this guide and its companion
content.

Feedback on the Guide
If you have comments on this guide, send e-mail to
 TFSguide@microsoft.com.

We are particularly interested in feedback regarding the following:
• Technical issues specific to recommendations
• Usefulness and usability issues

Technical Support
Technical support for the Microsoft products and technologies referenced in this guide is
provided by Microsoft Product Support Services (PSS). For product support information,
please visit the Microsoft Product Support Web site at http://support.microsoft.com .

Community Support
MSDN Newsgroups:
http://forums.microsoft.com/MSDN/default.aspx?ForumGroupID=5&SiteID=1

Forum Address
Team
Foundation
Server -
General

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=22&Sit
eID=1

Team
Foundation
Server -
Setup

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=68&Sit
eID=1

Team
Foundation
Server -
Administrati
on

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=477&Si
teID=1

Team
Foundation

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=481&Si
teID=1

mailto:TFSguide@microsoft.com
http://support.microsoft.com/
http://forums.microsoft.com/MSDN/default.aspx?ForumGroupID=5&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=22&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=22&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=68&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=68&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=477&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=477&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=481&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=481&SiteID=1

Server -
Build
Automation
Team
Foundation
Server -
Power Toys

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&Si
teID=1

Team
Foundation
Server -
Process
Templates

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=482&Si
teID=1

Team
Foundation
Server -
Reporting &
Warehouse

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=480&Si
teID=1

Team
Foundation
Server -
Team
System Web
Access

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=1466&
SiteID=1

Team
Foundation
Server -
Version
Control

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=478&Si
teID=1

Team
Foundation
Server -
Work Item
Tracking

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=479&Si
teID=1

The Team Who Brought You This Guide
This guide was created by the following team members:
• J.D. Meier
• Jason Taylor
• Alex Mackman
• Prashant Bansode
• Kevin Jones

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=482&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=482&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=480&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=480&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=1466&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=1466&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=478&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=478&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=479&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=479&SiteID=1

Contributors and Reviewers
• External Contributors/Reviewers. David P. Romig, Sr; Eric Blanchet; Leon

Langleyben; Martin Woodward; Quang Tran; Sarit Tamir; Tushar More; Vaughn
Hughes; Michael Ruminer

• Microsoft Contributors / Reviewers. Ajay Sudan; Ajoy Krishnamoorthy; Alan
Ridlehoover; Alik Levin; Buck Hodges; Clark Sell; Doug Neumann; Edward
Jezierski; Eric Charran; Graham Barry; Janet Williams Hepler; Jeff Beehler; Julie
MacAller; Ken Perilman; Mario Rodriguez; Marc Kuperstein; Mario Contreras; Mark
Nichols; Matthew Mitrik; Michael Puleio; Nobuyuki Akama; Paul Goring; Pete
Coupland; Peter Provost; Randy Miller; Rob Caron; Robert Horvick; Rohit Sharma;
Sajee Mathew; Siddharth Bhatia; Tom Hollander; Venky Veeraraghavan

Tell Us About Your Success
If this guide helps you, we would like to know. Tell us by writing a short summary of the
problems you faced and how this guide helped you out. Submit your summary to:
MyStory@Microsoft.com .

mailto:MyStory@Microsoft.com

PART I

Fundamentals

In This Part:

 Introducing the Team Environment

 Team Foundation Server Architecture

Chapter 1 - Introducing the Team Environment

Objectives
• Describe how Team Foundation Server supports the software development lifecycle.
• Describe how a typical development team uses Team Foundation Server.
• Describe how a typical test team uses Team Foundation Server.
• Describe the physical environment of a development team and test team.

Overview
This chapter describes how Team Foundation Server (TFS) and Visual Studio Team
System (VSTS) are used in a team-based development environment. It introduces the
core features of TFS and VSTS and describes the workflow between development and
test teams during a software development project. TFS integrates source control, work
tracking, reporting, project management and an automated build process, By doing so,
TFS enables a development team to work together more effectively.

A successful team-based software development project has many processes that must
work together smoothly to ensure an efficient working environment. The core processes
include:

• Development
• Test
• Build
• Deployment
• Release

This chapter introduces you to typical functions that the development and test teams can
perform with TFS and how you can use TFS to manage the workflow to support efficient
collaboration across teams.

How to Use This Chapter
Use this chapter to learn how TFS is designed to support the software development
lifecycle. Use this chapter to learn about the TFS workflow and how TFS enables you to
improve team collaboration.

For more detailed information about TFS architecture, and the TFS core components, see
Chapter 2, “Team Foundation Server Architecture.”

Logical Workflow of Team Foundation Server
Team Foundation Server enables a development team to store code in a centrally
managed source code repository. You can create builds from this repository by using the
Build Server and you can then distribute these to your test team.

Figure 1.1 shows the logical workflow of TFS and how the development and test
environments are connected.

Figure 1.1 Team Foundation Server Logical Workflow

The test team picks up builds from a drop location and runs them through their testing
environment by performing a combination of manual and automated tests. Test results are
stored by TFS and are used to provide quality feedback on the build. The test team can
also create work items and bugs (a specific type of work item) that the development team
need to action. These work items allow the test team to track the work of the
development team.

Logical Workflow of Development, Test and Production
Environments
In larger organizations with multiple development teams, each development team
maintains a separate TFS including separate source code repositories and team build
servers. Figure 1.2 shows an example of the logical workflow that results from two
development teams delivering application builds to an integration test team.

Figure 1.2 Logical Workflow Showing Two Development Teams and an Integration Test
Team

Each development team delivers scheduled builds to a drop point such as a network share.
These are picked up by the test team and tested to measure the quality of the build. When
test quality gates are passed the applications are deployed to a staging server for final
checks and user acceptance before ultimately being deployed to a production server.

Development Processes
Developers perform a number of key interactions with Team Foundation Server
throughout the duration of a software development project. For example, as a developer
you interact with TFS in the following ways:

• You access bugs and task work items from TFS to determine what work you need to

do. For example, work items might have been assigned by your project manager, by
another developer or by the test team.

• You use the VSTS Source Control Explorer to access the TFS source control
repository and pull the latest source code into a local workspace or your development
computer.

• After performing the work identified by the work item, you check your code back
into the source control database.

• The check-in event might trigger a Continuous Integration build which uses Team
Build.

• If the build fails a new work item is created to track the build break.

Test Processes
As a member of a test team, you might interact with TFS in the following ways:

• You pick up the output of a scheduled build from a specific drop location.
• You perform manual and automated testing including security testing, performance

testing, and Web testing by using various Visual Studio Team Systems tools.
• You upload the results from the tests to the TFS Test Result Database for future

reference.
• You log bugs identified by your testing into TFS as new work items.
• You resolve existing bugs, if the latest build fixes bugs logged previously.

Physical Environments of Development and Test
The size and number of computers associated with your development and test
environments varies depending upon the size of your teams and projects. Figure 1.3
shows a typical development and test physical environment.

Figure 1.3 Development and Test Physical Environment

Development Environment
The development environment supports your development and build processes. The
development environment contains the following computers:

 A Team Foundation Server,
 A Build Server
 A server to store the drops from the build server.
 Developer workstations.

If you have a remote development team that accesses TFS remotely, or you have a
particularly large team that causes performance issues on your TFS then you can also
setup a Team Foundation Server proxy to help improve performance.

Test Environment
The test environment consists of one or more test workstations with Visual Studio 2005
Team Edition for Software Testers installed. This is used to manage the test life cycle,
perform functional testing, system testing, security testing, performance testing and Web
testing. Members of the test team use Team Foundation Server to manage work items,
bugs, and test results.

Additionally the test environment might also include Visual Studio Team Test Load for
performance testing.

Chapter 2 - Team Foundation Server Architecture

Objectives
• Describe Team Foundation Server architecture.
• Identify the components that make up the client, application and data-tiers.
• Highlight the differences between a single server and multi-server deployment.

Overview
This chapter introduces you to Team Foundation Server (TFS) architecture and basic
deployment topologies. TFS has a logical three-tiered architecture. It includes a client tier,
an application-tier, and a data-tier. TFS clients interact with the application tier through
various Web services, and the application-tier uses various SQL Server databases in the
data-tier.

You can choose to install the application-tier and data-tier on the same physical server or
you can install them on separate servers. Your choice depends largely on the size of your
team. A single-server deployment works best for teams with fewer than 50 team members.
A dual-server deployment can scale up to around 500 users.

How to Use This Chapter
Use this chapter to learn about the core TFS components and how they interact with one
another. By reading this chapter, you will also learn the purpose of each of these
components and how they are most commonly deployed.

 Read Chapter 1, “Introducing the Team Environment” If you are new to TFS,

read Chapter 1 before this chapter to learn about the ways in which development and
test interact with TFS and use it to improve collaboration and to improve the overall
efficiency of your software development efforts.

Team Foundation Server Architecture
Team Foundation Server employs a logical three-tiered architecture, including client,
application, and data tiers. TFS clients interact with the application tier through various
Web services; the application tier in-turn is supported by various databases in the data tier.
Figure 2.1 shows the components of each TFS tier as well as their interactions.

Figure 2.1 TFS Components and Tiers

Client Tier
The client tier contains the following important components

• Team Foundation Server object model. This is the public API used to interact with

Team Foundation Server. You can use the object model to create your own client side
applications that interact with TFS.

• Visual Studio Industry Partners (VSIP) components. These are third-party tools,
add-ins and languages for use within Visual Studio.

• Microsoft Office integration. This consists of a set of add-ins for Microsoft Excel
and Microsoft Project that enables you to query and update work items in the TFS
work item database. This is particularly useful for project managers who already use
these tools extensively.

• Command-line tools. These are the tools that enable you to interact with TFS from
the command line. The majority of these tools provide source control functionality
and they are useful for automating repetitive tasks and for scheduling tasks.

• Check-in policy framework. This supports the check-in policy feature, which is an
extensible mechanism that enables you to validate code during the check-in process.

Application Tier
The application tier exposes the following ASP.NET Web services accessed by the client
tier. These Web services are not intended for third-party integrators to program against,
but are described here for completeness. Web services are grouped into the following
collections:

 Team Foundation Data Services
 Team Foundation Integration Services

Team Foundation Data Services
This set of Web services is primarily concerned with manipulating data in the data tier.
These services include:
• Version Control Web service. The client tier uses this Web service to execute

various TFS source control features and to interact with the source control database.
• Work Item Tracking Web service. The client tier uses this Web service to create,

update and query work items in the Work Item Tracking database.
• Team Foundation Build Web service. The client tier and the MSBuild framework

uses this Web service to execute build processes.

Team Foundation Integration Services
The Team Foundation Integration Web services provide integration and automation
functionality. They do not interact with the data tier. These services include:
• Registration Web service. This service is used to register various other TFS services.

It maintains information in a registration database. The information is used by the
services to discover each other and determine how to interact with one another.

• Security Web service. This consists of the Group Security Service and the
Authorization Service. The Group Security Service is used to manage all TFS users
and groups. The Authorization Service provides an access control system for TFS.

• Linking Web service. This service enables tools to establish loosely coupled
relationships (or "links") between the data elements they hold. For example, the
relationship between a defect work item and the source code that was changed to fix
the defect is held by TFS using a link.

• Eventing Web service. This service enables a tool or service to register event types.
Users can subscribe to those events and receive notification through e-mail or by
invocation of a Web service. For example, you can use a check-in event to trigger a
continuous integration build.

• Classification Web service. This service works together with the linking Web
service to enable TFS artifacts to be classified according to predefined taxonomies.
This helps support cross-tool reporting even for artifacts that do not share a common
taxonomy to organize their data. For example, if work items are normally organized
by team, while tests are normally organized by component, you can also organize
tests by team, to enable them to be reported alongside work items.

Data Tier
TFS does not support direct access to data stored on the data tier from client applications.
All requests for data must be made through the Web services on the application tier. The
TFS data tier consists of the following data stores corresponding to data services on the
application tier.

• Work item tracking. This stores all the data related to work items.

• Version control. This stores all the data related to source control.
• Team Foundation Build. This stores all the information related to the TFS Team

Build feature..
• Reporting warehouse. This stores information related to all the tools and features in

TFS. The reporting warehouse simplifies the creation of reports that combine data
from multiple tools..

Deployment Topology
You can deploy TFS by using a variety of different topologies ranging from single server
installations to more complex multiple server topologies. Regardless of topology, you
need to be aware of a number of key requirements.

Key Requirements
Regardless of your selected deployment topology:
• You must install the application tier and the data tier in the same domain, although

they can be on the same or separate server nodes.
• You must install TFS computers with Windows Server 2003 with Service Pack 1

(SP1) or later.
• You must install all TFS application-tier Web services to the same server.
• You must install single TFS instances on a single physical computer/
• You cannot install more than one instance of TFS per physical server.
• You cannot distribute TFS databases across multiple database servers. All projects

must reside on one Team Foundation server group, and cannot be deployed across
groups.

• You cannot use an existing SharePoint Portal Server infrastructure to host the team
project portal. Consider using a dedicated server to host Team Foundation Server
SharePoint Portals.

• You should not install TFS on a server configured as a domain controller because this
is not supported.

• For dual-server deployments, you have to prepare some domain accounts to use to run
TFS services. For example, you need to create accounts such as
DOMAIN\TFSSERVICE, and DOMAIN\TFSREPORTS.

Single-Server Deployment
Single-server deployment is the simplest topology and is appropriate for small
development organizations or for pilot projects, with up to 50 users. With this approach,
you install all of the application tier and data tier components on a single server and
access them from the same domain.

If you need to install test rig components for performance testing, you can install them on
the server node or on one or more clients. Figure 2.2 shows the single server topology.

Figure 2.2 Single Server Topology

Dual-Server Deployment

The dual-server deployment topology is useful for large development teams in the range
of 50 to 500 users. In this deployment topology you install the application tier on a
separate server node from the data tier.

You can install Team Foundation Build services on the application tier, but you are
recommended to setup one or more dedicated build server for large teams. If your project
needs performance testing, you can deploy the test rig (controller and agents) to
additional sever nodes. Figure 2.3 shows the dual server topology.

Figure 2.3 Dual Server Topology

PART II

Source Control

In This Part:

 Structuring Projects and Solutions

 Structuring Projects and Solutions in Team Foundation
Server

 Defining Your Branching and Merging Strategy

 Managing Source Control Dependencies in Visual
Studio Team System

Chapter 3 - Structuring Projects and Solutions in Source
Control

Objectives
• Structure your Visual Studio solutions and projects appropriately.
• Know when to use multiple solutions and when to use a single solution.
• Identify appropriate structures for small, medium and very large teams.

Overview
This chapter explains various options for structuring Visual Studio solution and project
files in a manner appropriate for team development. Visual Studio uses solution (.sln)
files to group together related Visual Studio project (.csproj and .vbproj) files. Deciding
how to structure your projects and solutions is an important decision. Your chosen pattern
has a number of consequences. For example, it impacts how easily members of your
development teams can push and pull solutions and projects to and from source control,
the mechanism you use to reference dependencies, and also your build processes.

If you are working on a small project you can use a single solution to contain all of your
project files. If you are working on a software development project with a large number
of project files, you should use multiple solution files to group related projects that
correspond to subsets of functionality within your overall team project. In this scenario,
depending on your specific scenario you may also need a single solution file to group
together all of your project files.

How to Use This Chapter
Use this chapter to select an approach for structuring your Visual Studio solutions and
projects.
• Use the strategies list. Use the initial list of strategies: Single Solution, Multiple

Solutions with Master and Multiple Solutions to quickly evaluate the best approach
for your scenario.

• Read the scenario section relevant to you. Read the section describing how to
implement the option you have chosen.

• Read Chapter 4, “Structuring Projects and Solutions in Team Foundation
Server” next. Chapter 4 introduces you to important considerations to keep in mind
when storing your code in Team Foundation Server source control.

• Read Chapter 6, “Managing Source Control Dependencies”. Project structure
impacts the strategies available to you when managing dependencies across projects
and solutions. For more information about how to manage dependencies, read
Chapter 6.

• Read the companion How Tos. Read the following companion How Tos for a step-
by-step walk through of various procedures discussed in this chapter.

 How To: Structure ASP.NET Applications for Team Foundation Server
 How To: Structure Windows Applications for Team Foundation Server

 How To: Structure Your Source Control Folders in Team Foundation
Server

Strategies for Solution and Project Structure
The three most common strategies used to structure solution and project files are:

• Single Solution. If you work on a small system, create a single solution and place all

of your projects within it.
• Partitioned Solution. If you work on a large system, use multiple solutions to group

related projects together. Create solutions to logically group subsets of projects that a
developer would be most likely to modify as a set, and then create one master
solution that contains all of your projects. This approach reduces the amount of data
that needs to be pulled from source control when you only need to work on specific
projects.

• Multiple Solutions. If you are working on a very large system that requires dozens of
projects or more, use multiple solutions to work on sub-systems but for dependency
mapping and performance reasons do not create a master solution that contains all
projects.

In general:
• Use a single solution strategy unless the resulting solution is too large to load into

Visual Studio.
• Use multiple solutions to create specific views on sub-systems of your application.
• Use multiple solutions to reduce the time it takes to load a solution and reduce build

time for developers.

Keep the following considerations in mind when designing a project and solution
structure:

• Each project generates an assembly at build time. Start by determining what

assemblies you want to create and then use this to decide what projects you need –
this will determine how your codebase is factored into projects.

• Start with the simplest single solution structure; only add complexity to your structure
when it is really necessary.

• When designing a multi-solution structure:
o Consider project dependencies. Try to group those projects that have

dependencies on one another as part of the same solution. This enables you to
use project references within your solution. By using project references
instead of file references, you enable Visual Studio to keep build
configurations synchronized (debug/release), and to track versioning to
determine when projects need to be rebuilt. Try to minimize the number of
cross solution project references.

o Consider source sharing. Place projects that share source with each other
together in the same solution.

o Consider team structure. Structure your solutions to make it easy for teams to
work on a set of related projects together.

• Keep a flat project structure so that it is easy for you to group projects into solutions
without needing to make file system or source control folder structure changes.

Single Solution
If you work on a small system, consider using a single Visual Studio solution to contain
all of your projects. This structure simplifies development since all of the code is
available when you open the solution. This strategy also makes it easy to set up
references, because all references are between projects in your solution. You may still
need to use file references to reference third party assemblies, such as purchased
components, that are outside your solution. Figure 3.1 shows the single solution approach.

Figure 3.1 Single Solution Approach

The main reasons to choose this structure include:
• You can keep build scripts simple.
• You can easily map dependencies across projects within the solution.

Reasons not to use this structure include:
• All developers use the same solution and have the same set of projects. This could be

a problem for large systems where you want to organize projects by sub-system or
feature.

Partitioned Solution
If you work on a large system, consider using multiple solutions, each representing a sub-
system in your application. These solutions can be used by developers in order to work
on smaller parts of the system without having to load all code across all projects. Design
your solution structure so any projects that have dependencies are grouped together. This
enables you to use project references rather than file references. Consider creating a
master solution file that contains all of the projects, if you want to use this to build the
entire application. Figure 3.2 shows the partitioned solution approach.

Figure 3.2 Partitioned Solution Approach

When working with multiple solutions use a flat file structure for all of your projects. A
typical example is an application that has a Windows Forms project, an ASP.NET project,
a Windows service, and a set of class library projects shared by some or all of those
projects.

You can use the following flat structure for all projects:

• /Source
• /WinFormsProject
• /WebProject
• /WindowsServiceProject
• /ClassLibrary1
• /ClassLibrary2
• /ClassLibrary3
• Web.sln
• Service.sln
• All.sln

Keeping the structure flat provides a lot of flexibility and then you can use solutions for
presenting different views on the projects. Designing the physical folder structure around
solution files is very hard to change, especially if you realize that you need to reuse a
class library from another solution.

Reasons to use this structure include:

• Improved performance when loading and building application sub-solutions.
• Sub-solutions can be used to create views on sets of projects based on development

sub teams or boundaries of code sharing.
• The master solution can be used to build the entire application.
• You can easily map dependencies across projects in each sub-solution.

Reasons not to use this structure include:
• Increased solution maintenance costs. Adding a new project might necessitate

multiple solution file changes.
• Increased solution complexity. It may be harder for a new developer to understand

which solutions to work on.

Multiple Solutions
If you work on a very large solution requiring many dozens of projects you may hit
solution scalability limits. In this scenario, break your application into multiple solutions
but do not create a master solution for the entire application. In this scenario, all
references inside each solution are project references. References to projects outside of
each solution (for example to third party libraries or projects in another sub-solution) are
file references. This means that there can be no “master” solution. Instead, a script must
be used that understands the order in which the solutions must be built. One of the
maintenance tasks associated with a multiple-solution structure is ensuring that
developers do not inadvertently create circular references between solutions. This
structure requires complex build scripts and explicit mapping of dependency relationships.
In this structure it is not possible to build the application in its entirety within Visual
Studio. Instead, you use TFS Team Build. Figure 3.3 shows the multiple solutions
approach.

Figure 3.3 Multiple Solution Approach

Reasons to use this structure include:
• It works around Visual Studio IDE performance and scalability limits for very large

applications.

Reasons not to use this structure include:
• It requires a complex build script to handle dependencies across the sub-solutions by

building solutions in the right order.

Large Project Considerations
Large development teams are likely to distinguish themselves from smaller teams in the
following ways:

• They require a more complex branching and merging structure.
• They are more likely to manage dependencies across solutions and team projects.
• They are more likely to maintain multiple builds for components and teams.

A Partitioned Solution approach works well for most large projects because it provides
solution flexibility while maintaining a single solution that can be used to build the
application. If your application is large enough that you hit solution scalability limits, use
the Multiple Solutions approach.

Chapter 4 - Structuring Projects and Solutions in Team
Foundation Source Control

Objectives
• Structure projects for effective team development in Team Foundation Server source

control.
• Keep server-side and client-side folder structures synchronized.
• Choose a strategy for unit test structure.
• Create a folder structure that supports various branching scenarios.
• Learn what a workspace is and how it maps local files to source control.
• Understand what files are added to source control.

Overview
Many of the default folder conventions used by Visual Studio 2005 when you create new
solutions and projects are not optimized for team development and for use with Team
Foundation Server (TFS) Source Control. Rather than accepting the defaults when you
create new Visual Studio projects and solutions, you should give careful consideration to
your local and server-based folder structure when creating new Visual Studio solutions
and projects.

This chapter starts by explaining how you should structure solutions and projects on your
development computer (the client-side) and how you should structure your folders within
TFS Source Control (the server-side). It provides example folder structures for a variety
of application types including Window Forms, smart client and Web applications. The
chapter then explains how workspaces are used to manage the mappings between client
and server folder structures.

How to Use This Chapter
Use this chapter to learn sample folder structures suitable for team development projects
of various sizes and complexity.
• Use the server-side structure suggestions. Use the suggested server side folder

structures to organize your project source code within TFS source control.
• Use the client-side structure suggestions. Use the suggested client side folder

structures to organize your project source code in your local development
workspace.

 Read the companion How Tos. These provide a step-by-step walk through of some
of the processes discussed in this chapter:
• How To: Step Through Creating Your Source Tree in Team Foundation Server
• How To: Structure ASP.NET Applications for Team Foundation Server
• How To: Structure Windows Applications for Team Foundation Server
• How To: Structure Your Source Control Folders in Team Foundation Server

Server-Side Structure
Most team projects contain one or more Visual Studio solutions, each of which contains
one or more Visual Studio projects, When you require branching to support isolated
development paths, you use a root level folder called Main (on client and server) to
group together your Visual Studio projects. A sample folder structure within Team
Foundation Server source control is shown here:

$MyTeamProject1
 /Main Can contain solution (.sln) files
 /Source
 /MyApp1 Contains MyApp1.sln file
 /Source Contain folder for all source
 /ClassLibrary1 Contains ClassLibrary1.csproj
 /MyApp1Web Contains Default.aspx
 /UnitTests Container folder for unit tests
 /ClassLibrary1Tests Contains test project and code
 /MyApp1WebTests Contains test project and code
 /SharedBinaries Shared binaries e.g. libraries
 /SharedSource Shared source code

/Build Contains build output (binaries)
 /Docs Contains product documentation
 /Scripts Contains build scripts
 /Tests Container for tests
 /FunctionalTests
 /PerformanceTests
 /SecurityTests

Main is a container folder for the source files and other related artifacts such as build
output, design documentation, and test cases. An application folder (such as MyApp1 in
the preceding example) contains the Visual Studio solution (.sln) file used to group
together a related set of Visual Studio projects. Each project file (.vcproj or .vbproj) is
contained in a dedicated project folder, located beneath /Main/Source/MyApp1/Source.
Unit tests that accompany each source project are located beneath the UnitTests folder.
You can place additional Visual Studio solution (.sln) files in the Main folder to allow
you to work with multiple different groupings of projects.

The folders Build, Docs, Scripts and Test are used to hold additional artifacts associated
with the team project including the binary output of builds, documentation such
installation guides, help files, build scripts and tests.

For more information about project groupings and solution structure, see “Chapter 03 -
Structuring Projects and Solutions in Source Control”

Storing Unit Tests
You can store unit tests beneath a folder called UnitTests at the same level as Source as
shown here.
 …
 /MyApp1 Contains MyApp1.sln file
 /Source Contain folder for all source
 /ClassLibrary1 Contains ClassLibrary1.csproj
 /MyApp1Web Contains Default.aspx
 /UnitTests Container folder for unit tests
 /ClassLibrary1Tests Contains test project and code
 /MyApp1WebTests Contains test project and code

This scenario treats unit tests as first class citizens. However, it does so at the expense of
project level branching compatibility. An alternate structure is shown here:

 /MyApp1
 /Source
 /ClassLibrary1
 /ClassLibrary1Tests
 /MyApp1Web
 /MyApp1WebTests

The following pros and cons apply to each approach:

UnitTests as a Peer to the Source folder
• Pro: You can find unit tests in one place.
• Pro: You separate shipping code from non-shipping code.
• Pro: Your build process can easily run all unit tests across all projects.
• Con: It is harder for developer to run unit tests just for their project.
• Con: When you branch source it will not include unit tests.

UnitTests in Each Project
• Pro: Developers can easily run unit tests on a single project.
• Pro: When you branch, your branched folders include unit tests so they can stay

tightly bound to the source in each branch.
• Con: You mix shipping with non-shipping code in the source folder.
• Con: It is generally harder to run all unit tests at once at build time across all projects.

Storing Documents
The Docs folder is for product related documentation. To help determine what documents
to store in TFS source control and what to store in a document library on your SharePoint
team site, consider the following:

• Use SharePoint for internal team documents such as use cases, scenario and

requirements documentation, and design documentation.

• Use TFS source control for product-related documentation that you ship to your
customers. This could include installation and deployment guides, operations guides,
and help files.

Most documents are binary files, so consider using exclusive locks to avoid manual
merges. This way, you get notification when a file is in use and you help avoid having to
perform manual merges.

Use caution when using SharePoint because strict management of document versions is
required. It is easier to overwrite changes in SharePoint compared to TFS source control.
By default, SharePoint enables the "overwrite existing file" option selected when files are
uploaded.

Client-Side Structure
The local folder structure on your development workstations should be identical to the
server folder structure. Keep source artifacts well organized on your workstations by
placing all source from all team projects together beneath a single root folder, such as
C:\DevProjects. Create one sub-folder for each team project as shown in this example:

C:\DevProjects Root container folder for all team projects
 \MyTeamProject1 Container folder for TeamProject1
 \MyTeamProject2 Container folder for TeamProject2

Beneath each team project folder, use a copy of the application folder structure used on
the source control server.

\MyTeamProject1 Container folder for TeamProject1
 \Main Contains .sln files that span projects

\Source
 \MyApp 1 Contains MyApp1.sln
 \Source
 \ClassLibrary1 Contains ClassLibrary1.csproj
 \MyApp1Web Contains Default.aspx
 \UnitTests Contains unit test projects and source
 \ClassLibrary1Tests
 \MyWinApp1Tests
 \SharedBinaries Shared binaries e.g. libraries
 \SharedSource Shared source code
 \Build Container folder for build output
 \Docs Contains product documentation
 \Scripts Contains build scripts, database scripts
 \Tests Container for tests
 \FunctionalTests
 \PerformanceTests
 \SecurityTests

Note: The client-side structure automatically mirrors server-side structure if you create a
workspace mapping from the application root to your local computer. However, in very
large projects this can result in slow workspace load times. To optimize your approach
for very large projects, create workspace mappings below the root to only retrieve the
files you need for development.

Branched Folders
To support development isolation with branches, create additional folders as siblings of
Main. You can also place additional Visual Studio solution (.sln) files in Main to enable
developers to work with various groupings of projects. Branches created from the Main
source folders can be used to support ongoing maintenance of product releases or parallel
streams of development.

In the following sample structure, in addition to the Main root folder, a Development
folder (branched from Main) is used to provide isolation for features or for teams. A
Maintenance folder (again branched from Main) provides isolation for released builds
that require ongoing maintenance and support.

$MyTeamProject1
 /Development
 /FeatureBranch1
 /Source
 /MyApp
 /FeatureBranch2
 /Source
 /MyApp

/Main
 /Source

/Release
 /Source
/Maintenance

 /Release1
 /Source
 /MyApp
 /Release2
 /Source
 /MyApp

Note: Do not branch unless you need to. You can label a release and branch at a later
time if required.

For more information about project groupings and solution structure, see “Chapter 03,
Structuring Projects and Solutions in Source Control”

For more information about branching scenarios and related folder structures, see
“Chapter 5, Defining Your Branching and Merging Strategy.”

Workspaces Explained
A Team Foundation Server workspace is a client-side copy of the files and folders in TFS
source control. A workspace maps source control folders to local file system directories.
When you make changes to files within the workspace on your local computer, the local
changes, referred to as pending changes are isolated in your workspace until you check
them into the server as an atomic unit. The collective set of changes, checked in as a
batch is referred to as a changeset.

A single workspace can contain references to multiple team projects. You can also use
multiple workspaces to isolate files or versions for your use only. Workspaces are per
computer, per user account. Therefore, you can have different workspace definitions for
each computer you use. Also, as a single user, you can have multiple workspaces on a
single computer.

Note: You can only map each physical location on the local file system by using a single
workspace. However, you can map each server directory to entirely different local
directories by using different workspaces.

Creating a New Workspace Mapping
Because mappings are recursive, when you create a new workspace mapping and you
perform a Get Latest Version operation at the root of that workspace, the entire local
folder structure is created automatically. The newly created local folder structure matches
the server structure.
Keep the following recommendations in mind when you create new workspace
mappings:

• The project owner must ensure that the correct folder structure is used locally prior to

adding the solution to source control for the first time.
• When establishing a workspace mapping for a team project for the first time and

performing a get latest operation, be sure to map the root team project folder into an
appropriate local folder such as C:\DevProjects\TeamProject1.

Where Are Workspace Mappings Stored?
Workspace information is maintained on the client and on the server. On the client,
workspace information is held in VersionControl.config which is located in the following
folder:
 \Documents and Settings\[user]\Local Settings\Application Data\Microsoft\Team
Foundation\1.0\Cache.

The VersionControl.config file maps the name of the workspace to a local directory on
your computer. It does not hold the mapping between individual source control folders
and your local directories. That information is held on the server in several tables
(including tbl_Workspace and tbl_workingfolder) in the TfsVersionControl database.

What Files Should Be Version Controlled?
The following list identifies the key file types that you should add to source control.
These are the file types that are added when you click Add Solution to Source Control.

• Solution files (*.sln). Solution files maintain a list of constituent projects,

dependencies information, build configuration details, and source control provider
details.

• Project files (*.csproj or *.vbproj). Project files include assembly build settings,
referenced assemblies (by name and path), and a file inventory.

• Visual Studio Source Control Project Metadata (*.vspscc). These files maintain
project bindings, exclusion lists, source control provider names and other source
control metadata.

• Application configuration files (*.config). XML configuration files contain project
and application specific details used to control your application’s run time behavior.
Web applications use files called Web.config. Non-Web applications use files called
App.config.

Note: At run time, the Visual Studio build system copies App.config to your
project’s Bin folder and renames it as <YourAppName>.exe.config. For non-web
applications, a configuration file is not automatically added to a new project. If you
require one, add it manually. Make sure you call it App.config and locate it within the
project folder.

• Source files (*.aspx, *.asmx, *.cs, *.vb, …). Source code files, depending on
application type and language.

• Binary dependencies (*.dll). If your project relies on binary dependencies such as
third party DLLs, you should also add these to your project within source control. For
more information about managing dependencies, see Chapter 6, “Managing Source
Control Dependencies in Visual Studio Team System.”

What Files Should Not Be Source Controlled?
The following files are specific to each developer and should therefore not be added to
version control:
• Solution user option files (*.suo). These contain personalized customizations made

to the Visual Studio IDE by an individual developer.
• Project user option files (*.csproj.user or *.vbproj.user). These files contain

developer specific project options and an optional reference path that is used by the
Visual Studio to locate referenced assemblies.

• WebInfo files (*.csproj.webinfo or *.vbproj.webinfo). This file keeps track of a
project's virtual root location. This is not added to source control to allow individual
developers to specify different virtual roots for their own working copy of the project.
While this capability exists, you and all team members are recommended to use a
consistent (local) virtual root location when you develop Web applications.

• Build outputs. These include assembly dynamic-link libraries (DLLs), interop
assembly DLLs and executable files (EXEs). (Note though that assemblies such as

third-party binaries that are not built as part of the build process should be placed
under version control as described above).

Additional Resources
• Team Foundation Server Branching Guidance:

http://www.CodePlex.com/BranchingGuidance
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

Chapter 5 - Defining Your Branching and Merging
Strategy

Objectives
• Know when and when not to branch.
• Choose a branching and merging strategy for your project.
• Describe how a very large team changes your branching strategy.
• Identify appropriate folder structures for different branching scenarios.

Overview
This chapter introduces branching and merging strategies for a range of common
scenarios. Most often, you need branches either to support releases or to support parallel
development

For many simple scenarios, you do not need to branch and labeling your builds is
sufficient. For example, by using labels you can recreate a build at any point in the future
or find out which versions of a source file were used to create a particular build. You
should consider branching if you need isolation for parallel teams, to work on separate
but overlapping features, or to support a release.

How to Use This Chapter
Use this chapter to learn when to branch, and when not to branch. If you decide that
branching is appropriate for your situation, use this chapter to learn how to branch and
merge effectively.

If you want an overview of branching and merging, then read the chapter from top to
bottom to learn about the different strategies for branching and about the different
scenarios where branching is appropriate. If you are interested in a particular scenario,
jump directly to the relevant section.
• Use the scenarios list. Use the scenarios list to locate the scenario closest to your

own. Read the recommendations to create a branched folder structure appropriate
for your needs.

• Use the companion guidance. Refer to the branching and merging guidelines in
“Guidelines: Visual Studio 2005 Team Foundation Server Source Control” for a
summary of branching and merging guidelines.

Scenarios for Branching and Merging
The following are examples of when you might need to create branches and perform
merges:
• If you are having regular problems with broken builds, then you should create a

development branch to isolate parallel development efforts.

• If you have features that are causing stability issues or teams causing stability issues
among each other, then create separate feature or team branches beneath a
development container folder in source control.

If you have one stream of development, or are performing incremental and continuous
releases, you might not need to create branches unless you frequently experience
breaking changes that are destabilizing your development efforts.

Common Scenarios in Practice
The following are the most common branching scenarios:
• Scenario 1 – No Branches. Your team works only from the main source tree. In this

case, you do not create branches and you do not need isolation. This scenario is
generally for smaller or medium sized teams that do not require isolation for teams or
for features, and does not need the isolation for releases.

• Scenario 2 – Branch for Release. Your team creates branches to support an ongoing
release. This is the next most common case where you need to create a branch to
stabilize for a release. In this case, your team creates a branch before release time to
stabilize the release and merges changes from the release branch back into the main
source tree after the software is released.

• Scenario 3 – Branch for Maintenance. Your team creates a branch to maintain an
old build. In this case, you create a branch for your maintenance efforts, so that you
do not destabilize your current production builds. You may or may not merge changes
from the maintenance branch back into the main tree. For example, you may work on
a quick fix for a subset of customers that you do not want to include in the main build.

• Scenario 4 – Branch for Feature. Your team creates branches by features or teams.
In this case, you create a development branch, you perform work in the development
branch, and then you merge back into your main source tree. You may create separate
branches for specific features or for specific teams.

• Scenario 5 – Branch for Team. You branch to isolate sub teams so they can work
without being subject to breaking changes or can work towards unique milestones.

You may encounter one or more of these scenarios. Use these scenarios as a reference
point to see what guidance may or may not apply to you.

Example Folders and Their Purpose
The following folders are examples of folders you might create in Team Foundation
Server source control when structuring your source tree for branching and merging
scenarios.

• Development. Branched from Main and used to isolate active development.
• Main. Contains your main source tree.
• Release. Branched from Main and contains the release you are currently locking

down prior to release.

• Maintenance (container). Contains branches you have already shipped but now need
to maintain for customers. Provides isolation from the active development occurring
in your development branch.

Key Notes
Note the following important points about these folders:
• Development. This is branched from Main to provide isolated development.
• Main. This contains your most recent development builds.
• Release. This contains your release candidate. You work in this branch to prepare

your software for release, while others continue to work in the Development branch
working on new features.

• Maintenance. As soon as you release your software, you create a Maintenance
folder and move your Release branch into it. You use it to perform maintenance work.
Use labels to mark pre-maintenance builds you may want to return to.

The following sections show the use of branching in each of the preceding scenarios with
concrete examples.

Scenario 1: No Branches
This generally applies to smaller teams where you do not need to worry about isolation.
By labeling builds you are able to retrieve the source corresponding to a particular build.
There is no need to introduce branching complexity. You work directly from Main.

My Project
 Main
 Source

Scenario 2: Branch for Release
In this scenario your team creates a branch to stabilize the release and then merges the
release branch back into the main source tree after the software is released. The following
is a physical view showing branching for releases.

Main Main integration branch

Source
Release 1 Release branch

Source

Scenario 3: Branch for Maintenance
In this scenario, you create a branch for your maintenance efforts, so that you do not
destabilize your current production builds. The following is a physical view showing
maintenance branches:

Main Main integration branch

Source
Maintenance Maintenance branch container

Release 1 Maintenance branch
Source
Other Asset Folders

Release 2 Maintenance branch
Source
Other Asset Folders

Scenario 4: Branch for Feature
In this scenario, you create a development branch, perform work in that branch, and then
merge your work back into your main source tree. You organize your development
branches by product features. The following is a physical view showing branching for
feature development:

Development Isolated development branch container

Feature A Feature branch
Source

Feature B Feature branch
Source

Feature C Feature branch
Source

Main Main Integration branch
Source

Scenario 5: Branch for Team
This scenario is similar to the proceeding branch by feature scenario except that you
organize your development branches by sub team, rather than by product feature. There
might be a one to one correspondence between team and feature but in some cases a team
might work on multiple features. The following is a physical view showing branching for
sub team development:

Development Isolated development branch container

Team 1 Team branch
Feature A Isolated branch for development

Source
Feature B Isolated branch for development

Source
Team 2 Team branch

Feature A Isolated branch for development
Source

Feature B Isolated branch for development
Source

Main Main Integration branch
Source

Physical Structure
The physical structure is the view you see in Source Control Explorer in Visual Studio.
The following example shows the use of feature branches to isolate development, a main
branch to integrate changes and produce a scheduled integration build, a release branch
used to stabilize an upcoming release, and older maintenance branches used to support
previous releases.

• My Project
o Development – Container to isolate active development branches

 Feature A – Branch for isolated development
• Source

 Feature B – Branch for isolated development
• Source

o Main – Main integration and build branch. All changes come together
here.

 Source
 Other Asset Folders

o Release 3 – Branch containing the code currently being locked down to
release

 Source
o Maintenance – Container for maintenance branches

 Release 1 – Active maintenance branch
• Source
• Other Asset Folders

 Release 2 – Active maintenance branch
• Source
• Other Asset Folders

Note: Each branch contains source files and folders under it. In the preceding example,
this is labeled Source. This is the set of source files that were branched from Main.

Logical Structure
The logical structure consists of the parent/child relationships for each branch. This may
be different from the physical structure you can see in the Source Control Explorer. For
example, in the preceding physical structure, Release 2 and Main appear to be peers.
Release 2 is actually a child of Main. Figure 5.1 shows an example of this logical
relationship and how branches and merges flow through the structure.

Integration

Maintenance

Development

Legend

Branch Merge

Figure 5.1 Logical Relationship Showing Branch and Merge Flow

Release Process
Figure 5.2 shows a typical timeline when branching for a release:

Figure 5.2 Branching for Release Timeline

The sequence of events is as follows:

1. The Release 1 branch is created from Main once the release is ready to be locked

down.
2. Periodic merges into Main ensure bug fixes from the release are moved into the main

integration branch
3. The release build is labeled in the RTM branch and merged back into Main.
4. A service pack, SP1, is released. The build is labeled and changes are merged into

Main.
5. The Release 1 branch lives on in support of SP1 and to enable future service packs.

This process repeats for future releases.

Note: Successful use of release branches requires identifying which branch the fix should
be applied to before implementing it. If you release a fix as a hotfix or service pack, you
should make the change first on the appropriate Release branch, and then merge it into
Main to ensure it gets applied to future releases.

Isolated Development Process
Figure 5.3 shows a typical timeline when branching for development isolation.

Figure 5.3 Branching for Development Isolation TimeLine

The sequence of events is as follows:

1. A feature branch is created to isolate development for Feature A.
2. A feature branch is created to isolate development for Feature B.
3. Each team merges their changes to Main as feature milestones are complete so that

they can be integrated into the main build and picked up by other teams.
4. On a periodic schedule each team merges the latest changes from Main in order to

stay in sync with the work of other teams and reduce the number of conflicts per
merge.

Branching Considerations
When branching, consider the following:
• Structure your branch trees so that you only need to merge along the hierarchy (up

and down the branch tree) rather than across the hierarchy. Branching across the
hierarchy requires that you use a baseless merge which requires more manual conflict
resolution.

• The branch hierarchy is based upon the branch parent and branch child, which may be
different than the physical structure of the source code on disk. When planning your
merges, keep the logical branch structure in mind rather than the physical structure on
disk.

• Do not branch too deeply. Because there is latency in merging branches, a deep
branching structure can mean that changes in a child branch may take a very long
time to propagate to the main branch. This can negatively impact project schedules
and increase the time to fix bugs.

• Branch at a high-level and include configuration and source files.
• Allow your branching structure to evolve over time.

• Do not branch unless your development team needs to work on the same set of files
concurrently. If you are unsure, you can label a build and create a branch from that at
a later point. Merging branches, especially if there are significant changes between
them, can be costly.

• Merging requires one or more developers to execute the merge and sort out conflicts.
The merged source must be thoroughly tested as it is not uncommon to make bad
merge decisions that can destabilize the build.

• Merging across the branch hierarchy is especially difficult and requires you to
manually handle many conflicts that could otherwise be handled automatically.

The decision whether to create a branch can be boiled down to the following:
• Will the cost of merging conflicts in real time be higher or will the overhead cost of

merging conflicts between branches be higher?

Large Project Considerations
Large development teams are likely to distinguish themselves from smaller teams in the
following ways:

• Require a more complex branching and merging structure
• More likely to manage dependencies across solutions and team projects
• More likely to maintain multiple builds for components and teams

Large teams are likely to branch both by team and by feature and are also more likely to
have one or more branches designed to integrate external dependencies. Since the
branching structure is deeper there is more lag between a change in a development branch
and getting that change into the main integration branch. For this reason it pays to think
through your merging strategy when creating branches.

For example, will your merges be scheduled or event driven?

1. Reverse integration is generally scheduled, for example from a development
branch to the main integration branch.

2. Forward integration, such as from main integration branch to a development
branch, is generally based on an event (such as feature milestone complete). This
event is instigated when the team behind the development branch feels they are
ready to merge changes from their parent branch.

Rationalize your branch/merge strategy with the frequency with which you want to
produce builds. A deeper branching structure results in more time to merge from child
branches to the main integration branch. Symptoms of this causing a problem for your
development team include:

• Broken builds where the fix takes too long to propagate up to the main integration
branch.

• Missed milestones because features take too long to propagate up to the main
branch.

• Your team is spending large amounts of time merging changes between various
branches.

If this becomes a problem for your team consider reducing the depth of your branching
structure.

The following is an example of a branching structure for a large team:

• My Project
o Development – Container to isolate active development branches

 Team 1
• Feature A – Isolated branch for development

o Source
• Feature B – Isolated branch for development

o Source
 Team 2

• Feature A – Isolated branch for development
o Source

• Feature B – Isolated branch for development
o Source

o Main – Main integration and build branch. All changes come together
here.

 Source
 Other Asset Folders

o Release 4 – Branch containing the code currently being locked down to
release

o Maintenance – Container for maintenance branches
 Release 2– Active maintenance branch

• Source
• Other Asset Folders

 Release 3 – Active maintenance branch
• Source
• Other Asset Folders

o Safe Keeping
 Release 1 – Old release in safe keeping

• Source
• Other Asset Folders

This structure includes:

• Feature branches for multiple teams to work in isolation.
• A main branch to gather changes by all teams as well as bug fixes from the

release branches
• A release branch used to lockdown the current release
• A maintenance branch for an old release that is being actively maintained and

supported

• Safekeeping branches for older releases that are no longer being maintained

Additional Resources
• To see more Visual Studio Team System Guidance, visit the CodePlex site –

http://www.codeplex.com/VSTSGuidance
• Team Foundation Server Branching Guidance:

http://www.CodePlex.com/BranchingGuidance
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

http://www.codeplex.com/VSTSGuidance
http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

Chapter 6 - Managing Source Control Dependencies in
Visual Studio Team System

Objectives
• Manage source control dependencies in Visual Studio Team System.
• Reference projects and assemblies from different solutions in the same team project.
• Reference projects and assemblies from other team projects.
• Reference third party assemblies.
• Manage Web service references in a team environment.
• Manage database references in a team environment.

Overview
This chapter explains how you should handle source control dependencies both within
and across Visual Studio solutions. A consistent approach to managing dependencies in a
team environment is necessary in order to reduce build instability and ongoing source
control maintenance costs.

Dependencies include other projects, external assemblies, Web services and databases.
Dependencies inevitably change over time and as a result they impact the build process
(and the build order) of your application. A good dependency management approach
improves the integration process while making builds as seamless as possible.

How to Use This Chapter
Use this chapter to learn about managing dependencies in a team environment. You can
either read this chapter from top to bottom or read the section that addresses your specific
dependency management requirement. Use the “Scenarios and Solutions” section to
understand the general dependency management scenarios in a team environment. Use
this section as a jumping off point to following sections that describe each dependency
scenario.
 Use the “Referencing Projects” section to learn how to manage dependencies on

other projects both inside and outside of your current team project.
 Use the “Referencing Third Party Assemblies” section to learn how to manage

dependencies on third party assemblies for which you do not own the source.
 Use the “Referencing Web Services” section to learn how to reference shared Web

services in a team environment.
 Use the “Referencing Databases” section to learn how to reference and connect to

shared databases in a team environment.

Scenarios and Solutions
The following scenarios are common when managing dependencies:

1. You want to reference an assembly generated by another project in the same
solution

2. You want to reference an assembly generated by another project in a separate
solution.

3. You want to reference an assembly contained in another team project.
4. You want to reference a 3rd party assembly.

Referencing Assemblies Generated by Another Project in the
Same Solution
If you need to reference another assembly in the same Visual Studio solution use a Visual
Studio project reference. By using project references, you enable Visual Studio to do a
few things automatically for you, such as keeping building configuration synchronized
(debug/release) and tracking versioning and rebuilding components as necessary when
assembly versions change.

Referencing Assemblies Generated by Projects in a Separate
Solution
If you need to reference an assembly generated by a project in a different Visual Studio
solution, you have two choices:

 Use a file reference to point to the binary assembly.
 Add the Visual Studio project (project and source files) to your solution and then use

a project reference.

File references are more fragile than project references, do not adhere to your build
configuration, and are not tracked by Visual Studio build dependencies. This means if the
assembly that you have referenced changes, the Visual Studio build system does not
automatically know that a rebuild is required.

Alternatively you can branch the external project into your solution, build the binary and
then use a project reference. The reference will be more robust, however you will need to
merge from the source branch regularly in order to pick up changes.

Referencing an Assembly From Another Team Project
If you share source or binaries across team projects you have two options:

 Branching. With this approach you branch the source from the other team project

into your current solution. This creates a configuration that unifies the source from
the shared location and their project on the server-side.

 Workspace Mapping. With this approach you map the source from the other team
project into a workspace on your development computer. This creates a configuration
that unifies the source from the other team project and your project on the client-side.

Branching is the preferred approach because it stores the dependency relationship on the
source control server. Workspace mapping is a client-side only approach, which means
that you and every developer must create the mapping on your own computers and also
on the build server in order to be able to build the application. Branching adds additional
merge overhead but it allows you to make the decision to pick up updated binaries or
source more explicit.

Referencing a 3rd Party Assembly
This scenario is very similar to referencing across team projects except that you only
share binaries, not source code. The choice between branching and workspaces is very
similar with the added caveat that the overhead is likely to be less because 3rd party
assemblies are less likely to change as frequently.

Referencing Projects
If you have a Visual Studio project, for example containing shared library code that is
used by multiple team projects, you can either manage the project within the owning
team’s project or you can create a separate team project specifically for the shared project.

If you choose the latter approach and use a common shared project, the folder structure in
Team Foundation Server source control looks like Figure 6.1:

Figure 6.1 Using a Common, Shared Project Folder Structure
To consume the common shared project from your own team project you have two
options:

 Branching
 Workspace Mapping

Branching
Branching is the preferred method for most shared source scenarios. It enables you to pull
the shared source into your project and check it into your team project’s source control.
In this scenario, you branch the source from the common shared location into your team
project. This creates a configuration that unifies the source from the shared location and
their project on the server-side.

Shared source changes are picked up as part of a merge process between the branches.
This makes the decision to pick up changes in the shared source more explicit, easier to
test, but also adds some overhead. It also makes the use of Team Build much simpler
since the mapping is done server side, there is no client-side mapping that needs to be
duplicated on the build server.

For example if you have two team projects $TeamProject1 and $Common, and Common
is the shared project source, you create a branch from the shared location to the project
which is referencing it. The TFS folder structure should resemble the one shown in
Figure 6.2.

Figure 6.2 Using Branches

Your workspace mapping should resemble the following:

Source Control Folder Local Folder
$/MyTeamProject1/Main/Source/ C:\MyTeamProject\Main\Source

The client side workspace folder structure should resemble the one shown in Figure 6.3:

Figure 6.3 Client Side Workspace Mapping

Workspace Mapping
If you want your developers to instantly pick up any code changes from the shared source
without the overhead of branching and merging you can map the shared source from the
common project into the workspace on your development computer. This creates a
configuration that unifies the source from the shared location and your project on the
client-side.

The advantage of this approach is that shared project changes are picked up every time
you retrieve the latest source into your workspace. However, this makes the use of Team
Build more complex since the workspace mapping is a client-side construct.

For example if you have two team projects $MyTeamProject and $Common, and
Common is the shared project source, for referencing the code from the shared location,
these projects share a common path on the client’s hard drive. The client side workspace
folder structure should resemble the one shown in Figure 6.4.

Figure 6.4 Using Workspace Mapping

The workspace mappings should resemble the following:

Source Control Folder Local Folder
$/MyTeamProject2/Main/Source/ C:\DevProjects\MyTeamProject2\Main\Source\

$/Common C:\DevProjects\MyTeamProject2\Main\Source\
Common

For more information see “Working with multiple team projects in Team Build” at
http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

Referencing Third Party Assemblies
If you cannot use a project reference and you need to reference an assembly outside of
your current solution's project set, such as a third party library, and you do not wish to or
cannot create a branch from the originating project into yours, you must set a file
reference.

Managing shared binaries is similar to managing shared project source, and you must
decide where you want to store the binaries and how you want your team to access the
binaries. If you have binaries that are used by multiple team projects, you can either
manage the binaries within the team project of the owning team or create a team project
specifically for the shared binaries.

For the teams consuming the shared binaries, the same two options available for
referencing projects are available for binaries.

• Branching

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

• Workspace Mapping

Branching
In this scenario, you branch the binaries from the common shared location into your team
project. This creates a configuration that unifies the binaries from the shared location and
their project on the server-side.

The difference is that any changes to the binaries such as new versions are picked up as
part of a merge process between the branches. This makes the decision to pick up
changed shared binaries much more explicit.

For example if you have two team projects $TeamProject1 and $Common, and Common
contains the shared binaries, you create a branch from the shared location to the project
which is referencing it. The TFS folder structure should resemble the one shown in
Figure 6.5.

Figure 6.5 Branching from Common

Your workspace mapping should resemble the following:

Source Control Folder Local Folder
$/MyTeamProject1/Main C:\MyTeamProject1\Main

The client side workspace folder structure should resemble the one shown in Figure 6.6.

Figure 6.6 Client-Side Workspace Folder Structure

Workspace Mapping
In your team project that consumes the shared binaries, you reference the binaries from
the shared location into your workspace on your development computer. This creates a
configuration that unifies the binaries from the shared location and your project on the
client-side.

The advantage of this approach is that shared binaries changes are picked up every time
you retrieve the latest source into your workspace.

For example if you have two team projects $TeamProject1and $Common, where
reference the binaries in Common from TeamProject1, then the client side workspace
folder structure should resemble the one shown in Figure 6.7.

Figure 6.7 Storing Common Shared Libraries

The workspace mappings should resemble the following:

Source Control Folder Local Folder
$/MyTeamProject2/Main/ C:\DevProjects\MyTeamProject2\Main\
$/Common/Main/Bin C:\DevProjects\MyTeamProject2\Main\Source\CommonBin

For more information see “Working with multiple team projects in Team Build” at
http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

Guidelines for Referencing Projects and Assemblies
You can set a file reference in one of two ways:

• To reference a .NET Framework assembly, you select the assembly from the list

displayed on the .NET tab of the Add References dialog box.
• You can use the Browse button in the Add Reference dialog box.

Assemblies such as System.XML.dll are located in the Global Assembly Cache (GAC).
However, you never directly refer to an assembly within the GAC. Instead, when you
select an assembly on the .NET tab of the Add References dialog box, you actually
reference a copy of the assembly, located within
the %windir%\Microsoft.NET\Framework\<version>\ folder

Project references are preferable to file references, so when managing assembly
references, keep the following guidelines in mind:

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

• Use project references whenever possible
• Use file references only where necessary
• Use Copy Local = True for project and file references

Use Project References Whenever Possible
You should use a project reference whenever possible because they provide the following
advantages:
• They work on all development workstations where the solution and project set are

loaded. This is because a project Globally Unique Identifier (GUID) is placed in the
project file, which uniquely identifies the referenced project in the context of the
current solution.

• They enable the Visual Studio build system to track project dependencies and
determine the correct project build orders.

• They avoid the potential for referenced assemblies to be missing on a particular
computer.

• They automatically track project configuration changes. For example, when you build
using a debug configuration, any project references refer to debug assemblies
generated by the referenced projects, while they refer to release assemblies in a
release configuration. This means that you can automatically switch from debug to
release builds across projects without having to reset references.

• They enable Visual Studio to detect and prevent circular dependencies.

You can use a project reference if the assembly is already within your solution’s project
set. If the assembly is outside of your solution’s project set and you still wish to you a
project reference you can branch the dependency from the originating project into your
project. When you wish to pick up a new version of the dependency perform a merge
from the originating project into your branch.

Use File References Only Where Necessary
If you cannot use a project reference because you need to reference an assembly outside
of your current solution's project set, and you do not wish to create a branch from the
originating project into yours, you must set a file reference.

Use Copy Local = True for Project and File References
Every reference has an associated copy local attribute. Visual Studio determines the
initial setting of this attribute (true or false) when the reference is initially added. It is set
to false if the referenced assembly is found to be in the GAC; otherwise, it is set to true.
You should not change this default setting.

With copy local set to true, the Visual Studio build system copies any referenced
assembly (and any dependent downstream assemblies) to the client project's output folder
when the reference is set. For example, if your client project references an assembly
called Lib1, and Lib1 depends on Lib2 and Lib3, then Lib1, Lib2, and Lib3 are copied to
your project's local output folder automatically by Visual Studio at build time.

Automated Dependency Tracking
Each time you build your local project, the build system compares the date and time of
the referenced assembly file with the working copy on your development workstation. If
the referenced assembly is more recent, the new version is copied to the local folder. One
of the benefits of this approach is that a project reference established by a developer does
not lock the assembly dynamic-link library (DLL) on the server and does not interfere in
any way with the build process.

Referencing Web Services
In simpler systems where all of the projects for the system are contained within the same
team project, all developers end up with local working copies of all Web services because
they are defined by Visual Studio projects within the team project. When you open a
solution from source control for the first time, all projects (including any Web services)
are installed locally. Similarly, if a Web service is added to the solution by another
developer, you install the Web service the next time you refresh your solution from
source control. In this scenario, there is no need to publish Web services on a central Web
server within your team environment.

For larger systems, Web services can be published through Internet Information Server
(IIS) on a centrally accessed Web server and not all developers need to locally install the
Web service. Instead developers can access the Web service from their client projects
although you need to reference the Web service appropriately as discussed below.

Use Dynamic URLs When Referencing Web Services
If you want to call a Web service, you must first add a Web reference to your project.
This generates a proxy class through which you interact with the Web service. The proxy
code initially contains a static Uniform Resource Locator (URL) for the Web service, for
example http://localhost or http://SomeWebServer.

Important - For Web services in your current solution that execute on your computer,
always use http://localhost rather than http://MyComputerName to ensure the reference
remains valid on all computers.

The static URL that is embedded within the proxy is usually not the URL that you require
in either the production or test environments. Typically, the required URL varies as your
application moves from development to test to production. You have three options to
address this issue:
• You can programmatically set the Web service URL when you create an instance of

the proxy class.
• A more flexible approach that avoids a hard coded URL in the proxy, is to set the

URL Behavior property of the Web service reference to Dynamic. This is the
preferred approach. When you set the property to Dynamic, code is added to the
proxy class to retrieve the Web service URL from a custom configuration section of
the application configuration file, Web.config for a Web application or
SomeApp.exe.config for a Windows application.

• You can also generate the proxy by using the WSDL.exe command line tool and
specifying the /urlkey switch. This works in a similar way to setting the URL
Behavior property in that it adds code to the proxy to retrieve the Web service URL,
but in this case the URL is stored in the <appSettngs> section of the application
configuration file.

The dynamic URL approach also lets you provide a user configuration file, which can
override the main application configuration file. This allows separate developers (and
members of the test team) to temporarily redirect a Web service reference to an alternate
location.

How to Use Dynamic URLs and a User Configuration File
Set the URL Behavior property of your Web service reference to Dynamic to gain
maximum configuration flexibility both within the development and production
environments. By default Visual Studio sets the value of this property to Dynamic when
you add a Web reference. To check that this value is still set to Dynamic:

1. In the Solution Explorer, expand the list of Web references.
2. Select each Web reference in the list,
3. For each Web reference, check that the value of the URL Behavior property is set to

Dynamic.

To specify a Web Service URL in a user configuration file

1. When you first add a Web reference Visual Studio will automatically generate the

app.config for you. This file contains the Web service reference and the the
configuration setting in the app.config file looks like the following:

<configuration>
 <configSections>
 <sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >
 <section name=" SomeService.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
requirePermission="false" />
 </sectionGroup>
 </configSections>
 <applicationSettings>
 <YourProject.Properties.Settings>
 <setting name="SomeService_ localhost _Service"
serializeAs="String">

<value>http://localhost/someservice/Service.asmx</value>
 </setting>
 </ YourProject.Properties.Settings>
 </applicationSettings>
</configuration>

This file contains a new configuration section that is used by the generated proxy. This
configuration section contains the address of the Web service that Visual Studio found
when generating this proxy.

Visual Studio also places the default value of the URL into the code generated for this
proxy. This value lives in a file called Settings.Designer.cs. To see this file,

1. Right-click on the Web service reference in the Solution Explorer
2. Select View in Object Browser. In the Object Browser look for the entry that says

YourProject.Properties, where YourProject is the project name that contains Web
service reference.

3. Expand YourProject.Properties and you then double-click Settings. This opens the
Settings.Designer.cs file which contain a line like this

[global::System.Configuration.DefaultSettingValueAttribute("http://loca
lhost:/webservice/Service.asmx")]

This is the default value used for the URL of the Web service if no configuration
information is found.

You often need to change the URL of the Web service you are calling. For example you
may want to test against the Web service running locally on your computer or against a
version of the Web service running in a test environment. It is also highly likely that the
URL of the production Web service is not the same as the URL used during development.
To manage each of these URLs the URL value should be specified in a user configuration
file, which is referenced from the main App.config file. The name of the user
configuration file is arbitrary. The following example uses user.config as the file name to
be clear that this is where the user’s configuration would go.

To create a user.config file perform the following steps

1. In Solution Explorer, right-click the project that contains the Web service reference,

point to Add and click New Item
2. Select Application Configuration File, change the name to User.config and click

Add.
3. Copy the <YourProject.Properties.Settings> element setting from your application

configuration file (app.config) to the user.config file. This file should just contain the
element for which the runtime is redirected. There should be no other configuration
element present in the user.config file. Delete the <?xml> directive and the
<configuration> element if present. Here is an example

<YourProject.Properties.Settings>
 <setting name="SomeService_localhost_Service" serializeAs="String">
 <value>http://localhost/someservice/Service.asmx</value>
 </setting>
</YourProject.Properties.Settings>

Individual developer should set the contents of their user.config file as needed to
reference the appropriate URL. You now need to specify that the configuration system
should use this user.config file for this configuration data rather than the app.config file.
To do this you must update the app.config file as follows

1. Add a configSource="user.config" attribute to the <YourProject.Properties.Settings>

element of your main application configuration file. This silently redirects the runtime
to the named user configuration file when it accesses information from this section.

2. Delete the content of the <YourProject.Properties.Settings> element.

Your app.config should now look like this

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >
 <section name="SomeService.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
requirePermission="false" />
 </sectionGroup>
 </configSections>
 <applicationSettings>
 <yourProject.Properties.Settings configSource="user.config">
 </YourProject.Properties.Settings>
 </applicationSettings>
</configuration>

In the preceding example YourProject is the name of the project that contains the Web
service reference.

Important - If you use the configSource attribute then the user configuration file must
be present, with only the <SomeService.Properties.Service> element. You must also
ensure that when you add the configSource=”user.config” attribute you remove the XML
content from the <YourProject.Properties.Service> element.

When you use the User.config approach:

• Make sure that you deploy your user.config file along with the application code. To

do this in the Solution Explorer, right click the user.config file and click Properties
option. Set the Copy To Output Directory property to Copy if newer.

• Don't add your User.config file to source control. In this way, each developer (and the

test team) can explicitly bind to specific URLs by using their own User.config files.
Source control may contain other User.config files, for example for testing and for
production. These files should be managed by the users responsible for managing the
testing and production environments. These test and production User.config files

should not be stored as part of the Web service projects but should be in different
areas of the source control system.

• Store a global user.config file in source control. This could either contain only the

root element (no <setting> element) or it could specify the default location of the web
service. The user.config file must be present for the configuration system to work.

Tip: By default, the user configuration file is automatically added to source control when
you add the solution. To prevent this, when you first check in the file, de-select the
user.config file so it is not checked in. You can then right-click on the file in Solution
Explorer and select Under Pending Changes option, to ensure that the file is subject to
source control.

Important - If the user.config file that specifies the URL only contains the root element
(i.e. there is no setting element in the user.config) then the Web service proxy will use its
default value for the URL. This default value is hard coded into the proxy in a file called
Settings.Designer.cs. The value is specified as a DefaultValueSettings attribute and will
look like this

[global::System.Configuration.DefaultSettingValueAttribute("http://loca
lhost/webservice/Service.asmx")]

Important - For Web applications that use a user configuration file, by default, any
changes made to the file result in the Web application being automatically recycled. If
you do not want to recycle the application when a value changes, add the
restartOnExternalChanges="false" attribute to the configuration section definition.

<configSections>
 <sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <section name="Test.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
requirePermission="false" restartOnExternalChanges="true"/>
 </sectionGroup>
</configSections>

If you add this attribute to the configuration section in the web.config file then changes to
the external user.config configuration file will not cause the Web application to recycle,
however those changes will still be visible to the application.

It is important to realize that if you are using this mechanism then the User.config file
must be present. Somebody must be responsible for ensuring the environment is correct
when creating builds for production releases and for any test environments. As part of
this build setup the appropriate User.confg file must be retrieved from the source control
system and copied into the correct location for MSBuild to be able to find it.

Referencing Databases
Database references in the form of connection strings can also be managed by using an
external configuration file. The advantage of this is that each developer can easily specify
his or her own connection string is their own private User.config file. Any changes made
by one developer, such as redirecting the connection to a local database for unit testing
purposes, does not affect other developers.

User configuration files can also be used to control environmental-specific settings, such
as those required by a test environment. The test environment can also use a User.config
file which references the test database.

The procedure is similar to the preceding Web references example, except that in that
example the Web service proxy contains the code to retrieve the Web service URL from
the configuration file. For database connection strings, you must provide the code to read
the connection string.

How to Use User Configuration Files for Database Connection
Strings
The following procedure explains how to store and then reference a database connection
string within a user configuration file.

To use a user configuration file to store database connection strings
1. Add a configSource="user.config" attribute to the <connectionStrings> element of

your main application configuration file.

<configuration>
 <connectionStrings configSource=”user.config”/>
</configuration>

2. To override the main application configuration file, create a User.config file (located

in the same folder as the application configuration file), and then add a similar
<connectioStrings> entry to the file. Notice that the following connection string
references a local database.

<connectionStrings>
 <add name="DBConnStr"
 connectionString="server=localhost;Integrated
Security=SSPI;database=Accounts"/>
 </connectionStrings>
</configuration>

3. Within your project, use the following code to obtain the connection string from the

user configuration file. This code uses the static ConnectionStrings property of the
System.Configuration.ConfigurationManager class. In Win Form application you
must add a reference to System.Configuration.dll explicitly.

using System.Configuration;

private string GetDBaseConnectionString()
{
 return
ConfigurationManager.ConnectionStrings["DBConnStr"].ConnectionString;
}

4. Ensure that the User.config file is deployed along with the application code. To do so,

in the Solution Explorer right click the User.config file and click the Properties. In
the properties pane, set the Copy To Output Directory property to Copy if newer.

5. Do not add the User.config file to source control. In this way, each developer (and the

test team) can explicitly specify the connection string through their own User.config
file. Source control may contain other User.config files, for example for testing and
for production. These files should be managed by the users responsible for managing
the testing and production environments. These test and production User.config files
should not be stored as part of the database projects but should be in different areas of
the source control system.

6. In source control you should have a User.config file for each of the environments that

you use, such as production and test. These configuration files should specify the
connection string for the database. The User.config file must be present for the
configuration system to work.

Tip: By default, the user configuration file is automatically added to source control when
you add the solution. To prevent this, when you first check in the files, de-select the
User.config file so it is not checked in. You can then right-click on the file in Solution
Explorer and select Under Pending Changes to ensure that the file never comes under
source control.

It is important to realize that if you are using this mechanism then the User.config file
must be present. Somebody will be responsible for ensuring the environment is correct
when creating builds for production releases and for any test environments. As part of
this build setup the appropriate User.confg file will need to be retrieved from the source
control system and copied into the correct location for MSBuild to be able to find it.

Additional Resources
• To see more Visual Studio Team System Guidance, visit the CodePlex site –

http://www.codeplex.com/VSTSGuidance
• For more information on project references, see “Project References”:

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
• For more information on workspaces, see: http://msdn2.microsoft.com/en-

us/library/ms181383(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx

PART III

Builds

In This Part:

 Team Build Explained

 Setting Up Continuous Integration with Team Build

 Setting Up Scheduled Builds with Team Build

Chapter 7 - Team Build Explained

Objectives
• Understand Team Build architecture.
• Learn the components that make up Team Build.
• Understand what functionality Team Build provides.
• Select an appropriate build strategy.
• Understand how you may need to change your build strategy if working on a large

project

Overview
This chapter begins explains how you can use Team Build to automate the build process.
It outlines a number of common build-related stumbling blocks and compares various
approaches to builds ranging from daily scheduled builds to continuous integration builds.

Team Build is built on top of the Microsoft Build Engine (MSBuild) and you can use it to
retrieve the necessary source code for a build, compile solutions and, if required, execute
unit tests and static code analysis tools as part of the build process. You can also release
build output to a specified shared location.

Team Build labels the source code used for a particular build with build numbers so that
you can retrieve the source used to create a specific build at some point in the future. In
case of failures, you can configure Team Build to create work items and notify the users
about the build failures encountered.

How to Use This Chapter
Use this chapter to learn about the functionality that Team Build provides for automating
and managing the build process and to understand the different strategies for scheduling
builds.

 Read Chapter 8, “Setting up Continuous Integration with Team Build” if you

want to learn more about using continuous integration with Team Foundation Server.
 Read Chapter 9, “Setting up Scheduled Builds with Team Build” if you want to

learn more about using scheduled builds.
 Read the companion How Tos to help perform build-related tasks:
• How To: Automate Running Unit Test and Code Analysis with Team Build
• How To: Create Build Notifications
• How To: Setup a Continuous Integration Build
• How To: Setup a Scheduled Build.

Architecture
This section introduces the architecture of Team Foundation Team Build through a
description of its physical architecture and logical workflow.

Physical Architecture
• New Team Build Type Creation Wizard – This is a client side component accessed

from Team Explorer. You can create new build types by using the New Team Build
Type Creation Wizard.

• Team Build Browser – This is a client side component accessed from Team
Explorer. You can view the Team Build reports and build progress information in
Team Explorer by using the Team Build Browser

• Source Control Web Service – This is the application tier component used by the
build service for accessing the source code.

• Team Foundation Build Web Service – This is the application tier component that
accepts requests from the client and coordinates the execution of build steps.

• Build Service – This component can be on a separate build server or on the
application tier itself. This service runs the build steps on instructions from the Team
Build Web service.

• Team Foundation Build Store – This is a data tier component used to hold records
related to Team Build processes.

• Source Code database – This is a data tier store of actual source which is accessed
buy build service during the build processes.

Logical Workflow

Team Build integrates with Team Foundation Server through the Application Tier and
interacts with work items, code coverage, code analysis, test cases and reporting.

The TFSBuild.proj file controls the build, including what projects to build, configurations,
drop locations, code analysis, and tests to run. This file is generated by the Team Build
wizard when the build is first created and then can be edited directly in order to make
changes.
Team Build makes use of Team Foundation Server’s eventing system. You can use
events fired by Team Build to create custom build steps or to generate notifications of
build status changes or when the build is complete.

Key Points
• Team Foundation Build is built on top of MSBuild.
• TFSBuild.proj file contains all of the build settings. You generate it by using wizard

and then can directly edit it.
• The TFSBuild.rsp file contains command line options for MSBuild. This can be

modified to further customize the build.
• Event notification allows custom build steps or notifications through the

BuildStatusChangeEvent and BuildCompletionEvent.

• Team Build integrates with work items, code coverage, code analysis and test cases.

How Team Build Works
Team Foundation Build consists of the Team Build Service layered on top of the
MSBuild build system. MSBuild is responsible for the build itself, Team Build Service is
responsible for communication with the Team Foundation Server application tier. Team
Builds are created from the Visual Studio client and can be started from either the client
by an event on the build server, or from the command line for example as a scheduled
task. A build, once started, consists of the following steps:
1. Get sources from source control into the build directory
2. Compile the source and generate binaries
3. Optional: Run code analysis
4. Create a work item if there is a build failure
5. Optional: Run tests
6. Optional: Calculate code coverage
7. Log build details
8. Copy build to the drop location

Once the build is complete, the following is available:
• Build details. Details can be viewed from any client or from reports.
• Build binaries. Binaries are placed in the drop location.
• BuildLog. The log can be reviewed for errors and warnings.
• Work item. If the build fails a work item is created to track the build break.

How to Think About Builds
Use the following steps to determine your build strategy:
1. Consider your build consumers
2. Review solution scenarios
3. Understand common stumbling blocks

Consider Your Build Consumers
Most development teams have one or more of the following build consumers:
• Development team
• Test team
• Internal dogfood adopters
• External beta adopters
• Release to customers

Each consumer has different build quality and build frequency needs. In general, they
can be broken into two groups. Consumers who need predictable scheduled builds and
consumers who need rapid event-driven builds. Scheduled builds are most commonly
daily builds but can occur more or less frequently. Event-driven builds are usually

initiated by a check-in and are designed to give rapid feedback to the development team.
If your development team has problems with breaking builds, consider using a gated
check-in model in which check-ins are tested before they are allowed into the source tree
and are rejected if the tests fail.

Review Solution Scenarios
Choose solution scenarios based upon how closely the purpose and build consumers
match your team’s situation. When in doubt, use the simplest build scenario possible,
such as a scheduled build, and add more complex scenarios only if necessary.

Schedule builds
Scheduled builds provide consistent binaries at specific intervals. For example, these can
be builds for test teams, release or users. Examples of schedule builds would include
daily or nightly builds or weekly drops.

Continuous Integration
Continuous integration builds provide feedback to the developers by building as soon
after a check-in as possible.

Build Scenarios
• Team with single daily builds. Most teams rely on a scheduled build in order to

provide consistent binaries to their test team and other users.
• Team with daily builds and continuous integration builds. Some teams choose to

use continuous integration build in order to provide rapid feedback to their developers
on every check-in. A pure continuous integration build works well for small teams
but larger teams are likely to overload their build server due to high frequency check-
ins and longer build times. When this happens, a rolling build can be used to build
less frequently without giving up too much time between check-in and build feedback.

• Team with multiple build labs each performing daily build and continuous
integration builds. Very large teams are likely to require more complex solutions to
improve build quality and timeliness. Gated check-ins can be used to reduce build
breaks by rejecting bad check-ins before they make into source control. Teams that
branch can use multiple build servers, one per branch, to keep the builds focused on
each branch’s purpose. For instance integration branches would create integration
builds while development branches would create development builds.

Scheduled Builds
A scheduled build is a time-based build that is created on a fixed time frequency. The
purpose of a scheduled build is to produce consistent reliable builds that can be used to
gain feedback on the quality of the build.

The consumers of a scheduled build are most often:
• Test team
• Internal dogfood adopters

• External adopters

Continuous Integration Build
A continuous integration is triggered any time there is a check-in. The purpose of a
continuous integration build is to gain rapid feedback on build quality as soon after a
check-in as possible.

The consumers of a continuous integration build are most often:
• Development team

Gated Check-ins
Gated check-ins is a process that requires each check-in to meet some quality bar before
it can be added to the source tree. The purpose of gated check-ins is to reduce the
prevalence of build breaks and improve the quality of the build by requiring each check-
in is run through a set of tests before it can be admitted.

Understand Common Stumbling Blocks
There are several common scenarios that Team Build does not fully support by default.
Review the following scenarios and if your team will be faced with one of them:
• Building a Project with External Dependencies. If you use branching to bring

external dependencies into your team project then you can use project references and
the build will work on the build server without any additional steps. If you use client-
side workspace mapping to reference external dependencies, you’ll need to maintain
the mapping on the build server in order for the build to complete successfully. For
more information, see Explained - Managing Source Control Dependencies in Visual
Studio Team System

• Building a Setup Project. Team Build does not support setup projects by default.
Use a custom post-build step to compile the setup project and copy the binaries to the
build drop location. For more information, see How To – Build a Setup Project

• Building .NET 1.1 Applications. Team Build does not support .NET 1.1
applications by default. The MS Build Toolkit Extras for .NET 1.1 (MSBee)
allows .NET 1.1 builds but requires that your projects and solutions are upgraded to
VS 2005. If you cannot upgrade to VS 2005 projects and solutions you can use a
custom post-build step to compile the .NET 1.1 application. To download MSBee, see
http://www.codeplex.com/MSBee For more information on creating a custom post-
build step to compile .NET 1.1 application, see Nagaraju’s blog entry
http://blogs.msdn.com/nagarajp/archive/2005/10/26/485368.aspx

• Building VB6 Applications. Team Build does not support VB6 applications by
default. Use a custom post-build step to compile the VB6 application. To see similar
post build step that can be used to compile a .NET 1.1 application, see Nagaraju’s
blog entry http://blogs.msdn.com/nagarajp/archive/2005/10/26/485368.aspx

Scheduled Build
The purpose of a scheduled build is to produce a consistent reliable build that can be used
by test teams and others who will provide you quality feedback. Scheduled builds are
usually daily builds, but they could occur more or less frequently depending upon your
needs.

Use the following steps to create a scheduled build:
1. Create a batch file with a command line build
2. Use Windows Scheduled Tasks to execute the batch file on a schedule

For more information, see: ”Ch 09 - Setting Up Scheduled Builds with Team Build”

Continuous Integration Build
The purpose of a continuous integration build is to gain rapid feedback on build quality
as soon after a check-in as possible. Depending on the size of your team, the length of
your build, and the number of check-ins, choose one of the following strategies:
1. Continuous Integration build immediately following each check-in
2. Rolling build after a specified number of check-ins, or a specified time period –

whichever comes first

For more information, see: “Ch 08 - Setting Up Continuous Integration with Team Build”

Large Project Considerations
If you work on a large development team, there are additional considerations to keep in
mind. Large development teams are likely to distinguish themselves from smaller teams
in the following ways:

• Require a more complex branching and merging structure
• More likely to manage dependencies across solutions and team projects
• More likely to maintain multiple builds for components and teams

Keep the following considerations in mind for large teams:
1. Large teams are likely to have longer build times. The frequency of CI builds should

be less than the build time to avoid too much queuing and loading of the build server.
2. If your team branches, you can set up a build server per branch. This allows each

build to be focused on the purpose of the branch – eg. integration or development.
3. Integration branches are likely to have scheduled builds only. Development branches

may have continuous integration and scheduled builds.

Build Customization
TFSBuild.proj contains your team build settings, TFSBuild.rsp contains the command
line options that are passed to MSBuild in order to execute the build on the build server.

Common scenarios for customizing the build include:

• You want to modify the build number that is generated for your build.
• You want to change the workspace mapping used on the build machine to change

the files the build server gets from source control before the build. For instance,
your project may include workspace dependencies through workspace mapping
on the developer’s client machines. This mapping needs to be applied to the build
machine as well.

• You want to change the compilation behavior of your build. For instance, to better
support build and deployment of a line of business ASP.NET application.

Customize the Build Number
In order to customize the build number you need to generate the replacement build
number and the write it to the assemblyinfo file.
Use the following steps to customize the build number:

1. Override the $(BuildNumber) in BuildNumberOverride target.
2. Override the BeforeCompile target to write the AssemblyInfo.cs/vb.

Example
 <Target Name="BuildNumberOverrideTarget">
 <Message Importance="High" Text="$(BuildNumber)" />

 <ConvertTFSBuildNumberToSolutionBuildNumber
 MajorAndMinorVersion="1.0"
 TFSBuildNumber="$(BuildNumber)"
 TFSLastBuildNumber="$(LastBuildNumber)">
 <Output TaskParameter="SolutionBuildNumber" PropertyName="SolutionBuildNumber" />
 <Output TaskParameter="TFSBuildNumber" PropertyName="BuildNumber" />
 </ConvertTFSBuildNumberToSolutionBuildNumber>
 <Message Importance="High" Text="$(SolutionBuildNumber)" />
 <Message Importance="High" Text="$(BuildNumber)" />
 </Target>

 <Target Name="BeforeCompile">
 <Message Importance="High" Text="$(SolutionBuildNumber)" />
 <CreateItem Include="$(SolutionRoot)**\AssemblyInfo.cs">
 <Output TaskParameter="Include" ItemName="AssemblyInfoFiles"/>
 </CreateItem>
 <CreateItem Include="$(SolutionRoot)**\AssemblyInfo.vb">
 <Output TaskParameter="Include" ItemName="AssemblyInfoFiles"/>
 </CreateItem>
 <RewriteFileVersions
 AssemblyInfoFiles="@(AssemblyInfoFiles)"
 AssemblyVersionNumber="$(SolutionBuildNumber)"
 AssemblyFileVersionNumber="$(SolutionBuildNumber)"
 AssemblyInformationalVersionNumber="$(SolutionBuildNumber)" />
 </Target>

Change Workspace Mapping
In order to change the workspace mapping for your build you need change the get
location to match that on a developer’s machine.
Use the following steps to change the workspace mapping:

1. Change the $(SkipGet) property to true.
2. Change the $(SolutionRoot) property to such as "C:\DevProjects".
3. Change the $(WorkspaceName) property to build machine name, such as

"TFSBuild".
4. Override the BeforeGet target to change the behavior of source code download.

Example
 <PropertyGroup>
 <SolutionRoot>C:\DevProjects</SolutionRoot>
 <WorkspaceName>VSWS-BB</WorkspaceName>
 </PropertyGroup>

 <PropertyGroup>
 <SkipGet>true</SkipGet>
 </PropertyGroup>
 <Target Name="BeforeGet">
 <Get Workspace="$(WorkspaceName)" Recursive="true" Force="true"
 FileSpec="$/DevProjects/MCS.Japan.SCSystem/*" />
 </Target>

Change Compilation Behavior
In order to change the compilation behavior of your build you need to modify the default
behavior of CoreCompile.

1. Override the CoreCompile target for the normal compilation tasks.
2. In CoreCompile target, do the following tasks.

a. Build the solution.
b. Precompile the ASP.NET Web applications.
c. Create the instrumentation binary.
d. Change the web.config to encrypted web.config.
e. Copy the build outputs to the $(BinariesRoot).

Example
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="DesktopBuild"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <ItemGroup>
 <SolutionToBuild Include="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.sln"
/>
 </ItemGroup>

 <ItemGroup>
 <ConfigurationToBuild Include="Release|Mixed Platforms">
 <FlavorToBuild>Release</FlavorToBuild>

http://schemas.microsoft.com/developer/msbuild/2003

 <PlatformToBuild>Mixed Platforms</PlatformToBuild>
 </ConfigurationToBuild>
 <ConfigurationToBuild Include="Debug|Mixed Platforms">
 <FlavorToBuild>Debug</FlavorToBuild>
 <PlatformToBuild>Mixed Platforms</PlatformToBuild>
 </ConfigurationToBuild>
 </ItemGroup>

 <Target Name="CoreCompile"
 DependsOnTargets="$(CoreCompileDependsOn)"
 Inputs="%(ConfigurationToBuild.PlatformToBuild);%(ConfigurationToBuild.FlavorToBuild)"
 Outputs="%(ConfigurationToBuild.PlatformToBuild);%(ConfigurationToBuild.FlavorToBuild)"
>

 <TeamBuildMessage Tag="Configuration" Condition=" '$(IsDesktopBuild)'!='true' "
 Value="%(ConfigurationToBuild.FlavorToBuild)" />
 <TeamBuildMessage Tag="Platform" Condition=" '$(IsDesktopBuild)'!='true' "
 Value="%(ConfigurationToBuild.PlatformToBuild)" />

 <CallTarget Targets="CoreCompileForDebug"
 Condition="'%(ConfigurationToBuild.FlavorToBuild)'=='Debug'" />
 <CallTarget Targets="CoreCompileForRelease"
 Condition="'%(ConfigurationToBuild.FlavorToBuild)'=='Release'" />

 <OnError ExecuteTargets="OnBuildBreak;"/>
 </Target>

 <Target Name="CoreCompileForDebug">
 <MSBuild
 Projects="@(SolutionToBuild)"
 Properties="Configuration=%(ConfigurationToBuild.FlavorToBuild);Platform=%(Configurati
onToBuil
d.PlatformToBuild);SkipInvalidConfigurations=true;TeamBuildConstants=$(TeamBuildConstants);
RunCodeAnalys
is=$(RunCodeAnalysis)"
 Targets="Rebuild" RunEachTargetSeparately="true" ContinueOnError="true" />

 <AspNetCompiler
 VirtualPath="/WebSvc"
 PhysicalPath="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc"
 TargetPath="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc_deplo
y"
 Clean="True" Debug="True" Force="True" />

 <Copy SourceFiles="$(MSBuildProjectDirectory)\Web.debug.config"
 DestinationFiles="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc
_deploy\web.conf
ig" />

 <CreateItem
Include="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc_deploy\bin\Ap
p_*.d
ll">
 <Output TaskParameter="Include" ItemName="DllFilenameForInstrument"/>

 </CreateItem>
 <Exec Command=""\Program Files\Microsoft Visual Studio 8\Team Tools\Performance
Tools\vsinstr.e
xe" -coverage %(DllFilenameForInstrument.Identity)"
 ContinueOnError="true" />
 <Exec Command=""\Program Files\Microsoft Visual Studio 8\Team Tools\Performance
Tools\vsinstr.e
xe" -coverage
$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc_deploy\bin\MCS.Japan.
SCS
ystem.BizLogic.dll"
 ContinueOnError="true" />

 <DirectoryCopy
From="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc_deploy"
 To ="$(BinariesRoot)\Debug\WebSvc" />
 <DirectoryCopy
From="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WinUI\bin\Debug"
 To ="$(BinariesRoot)\Debug\WinUI" />
 </Target>

 <Target Name="CoreCompileForRelease">
 <MSBuild
 Projects="@(SolutionToBuild)"
 Properties="Configuration=%(ConfigurationToBuild.FlavorToBuild);Platform=%(Configurati
onToBuil
d.PlatformToBuild);SkipInvalidConfigurations=true;TeamBuildConstants=$(TeamBuildConstants);
RunCodeAnalys
is=$(RunCodeAnalysis)"
 Targets="Rebuild" RunEachTargetSeparately="true" ContinueOnError="true" />
 <AspNetCompiler
 VirtualPath="/WebSvc"
 PhysicalPath="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc"
 TargetPath="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc_deplo
y"
 Clean="True" Debug="False" Force="True" />
 <Copy SourceFiles="$(MSBuildProjectDirectory)\Web.release.config"
 DestinationFiles="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc
_deploy\web.conf
ig" />
 <DirectoryCopy
From="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WebSvc_deploy"
 To ="$(BinariesRoot)\Release\WebSvc" />
 <DirectoryCopy
From="$(SolutionRoot)\MCS.Japan.SCSystem\MCS.Japan.SCSystem.WinUI\bin\Release"
 To ="$(BinariesRoot)\Release\WinUI" />
 </Target>

 <Target Name="AfterCompile">
 <Exec Command="cabarc.exe -r -p n MCS.Japan.SCSystem.cab
$(SolutionRoot)\MCS.Japan.SCSystem*.*" />
 <Copy SourceFiles="$(MSBuildProjectDirectory)\MCS.Japan.SCSystem.cab"
 DestinationFiles="$(BinariesRoot)\Sources\MCS.Japan.SCSystem.cab" />
 <OnError ExecuteTargets="OnBuildBreak;"/>
 </Target>

Chapter 8 - Setting up Continuous Integration with Team
Build

Objectives
• Understand the purpose of a continuous integration build.
• Setup continuous integration with Team Build.
• Optimize your continuous integration build to reduce bottlenecks.

Overview
This chapter explains how you can setup continuous integration builds with Team Build
and Team Foundation Server. Use continuous integration builds to gain rapid feedback
on build quality as soon after a check-in as possible. During team development it is
important to get rapid feedback on the quality of check-ins, especially if they combine
with other developer’s changes and break the build. A continuous integration build gives
you the chance to fix code quickly, to unblock other team members improving the
consistency and quality of your build.

How to Use This Chapter
Read this chapter to learn strategies for continuous integration and about how to setup
and configure continuous integration builds with Team Build. For a step-by-step
walkthrough to help you setup continuous integration, see “How To: Setup a Continuous
Integration Build.”

If you are new to Team Foundation Server and Team Build or want to learn more about
the options available for automating and scheduling builds, read Chapter 7, “Team Build
Fundamentals” first..

Strategy for Continuous Integration Build
Continuous integration (CI) is the process of creating builds whenever a developer checks
code into Source Control. Following are various strategies used for continuous
integration build.

Build on Each Check-in
Building immediately after every check-in is the simplest continuous integration strategy
and will generally give you the most rapid feedback. However, if check-ins occur rapidly
enough to overwhelm the build server you should use a rolling build in which you build
after a specified number of check-ins or after a specified time period. To determine if
you need to use a rolling build determine the following:
• Length of your team build in minutes
• Average frequency of check-ins in minutes
• Time window during which frequent check-ins occur

If the length of the build is longer than the average frequency of check-insthen your
builds will start to queue up since one build will not complete before the next check-in
occurs. If the build queue is long enough, it will impact the performance of build server
and start to delay other builds, such as scheduled builds. Review the time window
during which frequent check-ins occur and determine if the queue will have room to
unwind after the busiest check-in period is over.
For more information, see How to Produce a Continuous Integration Build.

Rolling Build after Specific Number of Check-ins
If your build server is overloaded by building after each check-in you can choose to only
build after a specified number of check-ins have completed. While this is the simplest
rolling build solution it has a significant drawback. Since the build server must see a
specific number of check-ins before a build is started, the last check-in of the day is
virtually guaranteed not to get a build and so build feedback will be delayed.
For more information, see “How to Produce a Rolling Build”.

Rolling Build after Specific Time Interval
Producing a build a specific time interval after each check-in is an improvement over
building after a specific number of check-ins. This approach is guaranteed to produce a
build within a specific timeframe of each check-in made. The downside is that each build
may have a widely varying number of associated check-ins. Some builds may only have
one check-in while others may have hundreds. The more check-ins in each build the
more difficult it is to determine which check-in created the breaking change.

Rolling Build after Specific Number of Check-ins or Time Interval
Producing a build after a time interval or number of check-ins, whichever occurs first,
will result in the most consistency in your rolling builds while still reducing build server
load. Use a rolling build if a continuous integration build will create a build queue that is
very long and results in builds that occurs a significant time after the check-in. Use a
check-in interval to specify the number of check-ins between each build. Use the timeout
period to ensure a build occurs even if there are no additional check-ins.

Determining Your Rolling Build Interval
To determine the ideal rolling build interval, divide the average frequency of check-ins
by the length of your build. For instance if you have a build that takes 10 minutes and
you average a check-in every 5 minutes you could set a check-in interval of 2 check-ins
and a timeout period of 10 minutes. This would help ensure that the build is complete
before the next build is kicked off. If you notice excessive load on your build server you
can increase these values.

Continuous Integration Build in Team Foundation Server
The Team Foundation Server 2005 does not provide a CI solution out of box, but does
provide the framework for you to implement your own CI build solution.

For more information about setting up a continuous integration build with Team
Foundation Server 2005, see “How To: Setup a Continuous Integration Build with Team
Foundation Server 2005”. This “how to” uses the solution provided by the Visual Studio
Team System development team. The solution installs a Web service that runs under an
account which has access to the TFS server. Team Foundation Server is able to send an
email or call a web service when specific events occur. This event mechanism is used by
the CI solution to register a Web service with the CheckinEvent, so whenever a check in
occurs, the Web service initiates a Team Build.

Chapter 9 - Setting up Scheduled Builds with Team Build

Objectives
• Understand the purpose of a scheduled build.
• Setup a scheduled build with Team Build.

Overview
This chapter explains how you can setup scheduled builds with Team Build and Team
Foundation Server. The purpose of a scheduled build is to automate the process of
creating a reliable build on a consistent schedule. This is the type of build most often
used by test teams, internal adopters, external beta users..

Scheduled builds are the simplest form of build automation. You can configure them to
run hourly, daily, weekly or at any time interval that works best for your team.

How to Use This Chapter
Read this chapter to learn strategies for scheduled builds and about how to setup and
configure scheduled builds with Team Build. For a step-by-step walkthrough to help you
setup a scheduled build see, “How To: Setup a Scheduled Build.”

If you are new to Team Foundation Server and Team Build or want to learn more about
the options available for automating and scheduling builds, read Chapter 7, “Team Build
Fundamentals” first.

If you are concerned about build instability caused by the quality of the code that your
development team checks in, you should consider using continuous integration builds.
For more information about continuous integration, see Chapter 8, “Setting up
Continuous Integration with Team Build.”

Strategy for Scheduled Build
This section discusses the various strategies used when deciding on Scheduled Builds.

Frequency of Scheduled Build
The frequency of the builds is one of the important points to decide when doing a
scheduled build.

Hourly Builds
If you are working on a project for which there are enough check-ins that significant
changes may occur within an hour and you don’t have continuous integration builds you

can use an hourly build frequency. You use the hourly build to provide feedback to
developers and you can also make them available to testers and others for their quality
feedback.

Nightly Builds
This is the most common scheduled build frequency. This scheduled gives your test and
development team a new build every morning incorporating the changes from the
previous day, ready to be tested.

Weekly Builds
If you are working on a large project, where your development team had moderate
velocity owing to the complexity of the project and the build time runs into days, you
should opt for weekly builds. This ensures that your test team, at the start of each week,
has a build incorporating the changes from the previous week, ready to be tested.

Scheduled Build in Team Foundation Server
Team Build feature in Team Foundation Server does not support scheduled builds from
the user interface. Instead you can use the Windows Task Scheduler to run the TFSBuild
command utility to start builds at predetermined time.

Use the following steps to create a scheduled build:

1. Create a TFSBuild command line.
TfsBuild start <<TeamFoundationServer>> <<TeamProject>>
<<BuidlTypeName>>

2. Place the command line in a batch file.
3. Create a Windows Scheduled Task that runs the batch file at your desired interval

For more information see How To: Setup a Scheduled Build with Team Foundation
Server 2005

PART IV

Large Project Considerations

In This Part:

 Large Project Considerations

Chapter 10 - Large Project Considerations

Objectives
• Understand large project workflow in Team Foundation Server.
• Learn how to optimize source control and build for large teams.
• Learn how source control is impacted by large projects.
• Learn how your branch and merge strategy may need to change if you are in a large

project.
• Learn how build strategy is influenced by large projects.

Overview
This chapter describes additional considerations for large-scale development efforts with
Team Foundation Server (TFS). You can distinguish a large project from a smaller
project in the following ways. Large teams working on large projects:

• Require a more complex branching and merging structure
• Must deal with a greater number of dependencies across solutions and team projects.
• Are more likely to maintain multiple builds for components and teams.

For example, in a large project you might need to support multiple branches to support
the parallel development efforts of multiple feature teams. You are likely to need to
manage dependencies across solutions and team projects and to share common Web
services and databases. Each sub-team may need to maintain its own build server and
output builds to a specific drop point.

How to Use This Chapter
Read this chapter if you need to manage, support or participant in large-scale
development project. Chapters 3, 5, and 7 also provide specific “Large Project
Considerations” sections. Use this chapter to review all of the large project considerations
in a single place.

Logical Workflow for Large Projects
Figure 10.1 outlines a common scenario of multiple sub teams working together to
produce a complex application.

Figure 10.1 Large Project Scenario

Figure 10.1 highlights a number of key points about the way in which a large team
project operates:
• Each sub team maintains its own build server and produces builds to a drop point.
• Application team’s pick up builds from the component teams and reuse them as part

of their solutions and include them in their builds.
• Component and integration testing occurs on each build, bugs are filed in the

appropriate bug database.

Source Control Considerations
If you work on a very large solution requiring many dozens of projects you may hit
Visual Studio solution (.sln) scalability limits. For this reason, you should organize your
source control structure by sub systems or sub applications and use multiple solution files.
You divide your application into multiple solutions but do not create a master solution for
the entire application. Figure 10.2 shows the multiple solutions approach used by large
teams.

Figure 10.2 Multiple Solution Approach

In this scenario, all references inside each solution are project references. References to
projects outside of each solution (for example to third party libraries or projects in
another sub-solution) are file references. This means that there can be no “master”
solution. Instead, you must use a script that understands the order in which the solutions
must be built. One of the maintenance tasks associated with a multiple-solution structure
is ensuring that developers do not inadvertently create circular references between
solutions. This structure requires complex build scripts and explicit mapping of
dependency relationships. In this structure it is not possible to build the application in its
entirety within Visual Studio. Instead, you use TFS Team Build.

For more information about this multiple solution approach see Chapter 3, “Structuring
Projects and Solutions in Source Control.”

Branching and Merging Considerations
Large teams are likely to branch both by team and by feature and are also more likely to
have one or more branches designed to integrate external dependencies. Since the
branching structure is deeper there is more lag between a change in a development branch
and getting that change into the main integration branch. For this reason it pays to think
through your merging strategy when creating branches.

For example, will your merges be scheduled or event driven?
• Reverse integration is generally scheduled, for example from a development branch

to the main integration branch.
• Forward integration, such as from main integration branch to a development branch,

is generally based on an event (such as feature milestone complete). This event is
instigated when the team behind the development branch feels they are ready to
merge changes from their parent branch.

Rationalize your branch/merge strategy with the frequency with which you want to
produce builds. A deeper branching structure results in more time to merge from child
branches to the main integration branch. Symptoms of this causing a problem for your
development team include:

• Broken builds where the fix takes too long to propagate up to the main integration

branch.
• Missed milestones because features take too long to propagate up to the main branch.
• Your team is spending large amounts of time merging changes between various

branches.

If this becomes a problem for your team consider reducing the depth of your branching
structure.

The following is an example of a branching structure for a large team:

• My Project
o Development – Container to isolate active development branches

 Team 1
• Feature A – Isolated branch for development

o Source
• Feature B – Isolated branch for development

o Source
 Team 2

• Feature A – Isolated branch for development
o Source

• Feature B – Isolated branch for development
o Source

o Main – Main integration and build branch. All changes come together
here.

 Source
 Other Asset Folders

o Release 4 – Branch containing the code currently being locked down to
release

o Maintenance – Container for maintenance branches
 Release 2– Active maintenance branch

• Source
 Release 3 – Active maintenance branch

• Source
o Safe Keeping

 Release 1 – Old release in safe keeping
• Source

This structure includes:
• Feature branches for multiple teams to work in isolation.

• A main branch to gather changes by all teams as well as bug fixes from the
release branches

• A release branch used to lockdown the current release
• A maintenance branch for an old release that is being actively maintained and

supported
• Safekeeping branches for older releases that are no longer being maintained

Build Considerations
Larger teams are likely to have longer build times. The frequency of Continuous
Integration (CI) builds should be less than the build time to avoid too much queuing and
loading of the build server. A build system for a large team is typically organized as
follows:

• If the team uses multiple team or feature branches, a build server is dedicated to each

branch. This enables the team to focus each build on the purpose of the branch, for
example integration or development.

• Build frequency is determined based on the needs of team. The build infrastructure is
designed and built to support these needs.

• Build frequency is chosen first, and based on that goal, the merge frequency is
determined.

• Scheduled builds are generally used for integration branches.
• A combination of continuous integration and scheduled builds are used for

development branches. Integration builds are distributed to the integration test team.
The output from the development branch scheduled build goes to the associated test
team and the development branch continuous integration build provides feedback
specific to the particular development team.

Another key question is whether you should have build, testing and quality gates at each
integration point? Alternatively, you could save that for your main integration branch.
Ideally you have a build server for each branch and you have quality gates along with a
supporting development and test team. You should be pragmatic though, and if that does
not exist, you may want to remove quality gates or remove branches to simplify your
structure.

PART V

Project Management

In This Part:

 Project Management Explained

 Work Items Explained

 MSF Agile Projects

Chapter 11 - Project Management Explained

Objectives
• Learn what functionality Visual Studio Team System provides for project managers.
• Choose a strategy for team project creation.
• Create and manage projects with Visual Studio Team System

Overview
This chapter introduces you to the project management features provided by Visual
Studio Team System and how they help you to overcome many of the common problems
and challenges associated with managing software development projects.

Visual Studio Team System and Team Foundation Server provide tools, templates and
reports to help you monitor and support your software development processes. Team
communication is made easier, handoffs required between team members are automated,
work items such as tasks are more easily assigned and tracked, and metrics that indicate
project health and progress are more easily monitored.

How to Use This Chapter
Use this chapter to learn about the specific features of TFS and VSTS relevant to project
managers.
• Read Project Management Summary and Traditional Project Management Issues

sections to understand the problems that TFS project management is attempting to
solve.

• Use the Strategies for Team Projects section to identify your strategy for Team
Project creation and organization.

• Use the remaining sections to better understand process templates, work items and
other project management features.

Project Management Summary
Planning a project generally consists of some variation of the following steps:
1. Generating vision statement. This involves creating a shared view of the end in

mind in terms of outcomes.
2. Generating scenarios. This includes figuring out the initial set of usage scenarios

for the software. This involves using customers. It also involves validating the
scenarios to make sure they represent customer value.

3. Generating set of features to support those scenarios. This includes breaking the
scenarios down into chunks of customer value that you can talk to customer about.

4. Generating a set of work items. This involves breaking the scenarios and features
down into specific tasks. Put another way, when the work items are completed, the
relevant feature or scenario is implemented

5. Breaking tasks into areas. This involves breaking tasks out into areas. These areas
could be functional or based on how teams are organized.

6. Scheduling the work. This could involve scheduling all the work up front, or
breaking the work into iterations.

Traditional Project Management Issues
Most project managers today use a variety of different tools to manage the software
development process and these tools usually have little if any integration with the tools
used by software developers to do their job. This lack of integration and cohesion across
tools and teams leads to significant challenges for the project manager. Typical issues
include:

• Dealing with disparate silos of information. Project management tools are usually

used in isolation, leading to silos of information that are not easily integrated. It’s also
usually difficult to integrate the data maintained by project management tools and the
data maintained by other team members such as bugs tracked within a separate bug
tracking system in order to generate meaningful metrics.

• Difficultly capturing project-related metrics. Obtaining critical metrics about a
project is needed to track status, to make decisions and to answer fundamental
questions such as “will the project be delivered on time and to budget?” To answer
these key questions, project managers typically rely on data obtained from Microsoft
Project or the bug tracking system used by the development and test teams.
Consolidating data from these disparate systems is difficult, time consuming and error
prone. Most of the metrics generated by tools are not stored or accessed in a uniform
manner. Creating reports is usually a manual and intensive effort that requires much
copy and pasting of information from different tools.

• Difficultly ensuring that requirements are met. There is often a gap between the
work planed for the development team and customer requirements and key non-
functional requirements identified for your system. There is another gap between
scheduled work and actual work. Vital information gets lost in these gaps which
results in requirements not being met.

• Managing processes and process change. Which policies should be applied? Which
processes should be followed by your teams? Communicating processes that your
team should be following is a challenging task. Implementing changes to address
systematic problems, without impacting team productivity is more difficult still.

• Lack of auditable communication and task tracking. Collaboration and team
cohesion is normally addressed by holding team meetings, and allocating task lists for
developers to help them focus on the right priorities. Keeping track of the progress of
individual tasks is difficult. Also, project managers often spend a lot of time gathering
status from different plans and lists. Team members also spend time completing
status reports and updating a variety of different documents and forms.

• Quality assurance. Predicting the number and severity of bugs in the software you
are producing is difficult and as a result schedule estimates and costs are usually “best
guesses”. These are traditionally supplemented with contingency, the amount of
which usually depends on how confident the project manager is about the current
health of the project.

Microsoft Visual Studio Team System is designed to help address many of these
traditional problems faced by project managers. It does so by providing a set of integrated
tools to help teams improve their software development activities and to help project
managers better support the software development processes.

Project Management Features in Team Foundation
Server
The key project management features provided by Visual Studio Team System include:

• Centralized work item management. Work items including bugs, risks, tasks,

scenarios and quality of service requirements are centrally recorded, managed and
maintained in the Team Foundation Server work item database. Centralizing their
storage makes it easy for all team members to view and access them.

• Office Excel and Office Project integration. By using the Office Excel and Office
Project integration features, project managers can continue to access the work item
repository and schedule information by using the tools they already know.

• Metrics and reporting. Team System provides a reporting service which transforms
operational data such as work items, build results, and test results into metrics stored
within Team System’s data warehouse. Predefined reports allow you to query a
variety of project health and quality metrics.

• Project portals. For every team project, Team System creates an associated project
portal that uses Microsoft Windows SharePoint Services. You use the portal to
manage project related documentation, and to quickly view key reports and assess the
current status of the project.

Benefits
The project management features of VSTS result in the following benefits:
• Centralized management
• High traceability
• Integrated project planning and scheduling
• Improved process control
• Improved team communication and cohesiveness
• Accurate progress reporting

Creating and Managing Projects with Team Foundation
Server
This is a summary of the general approach for creating team projects in Team Foundation
Server:
1. Choose a process template. You can either use a default template out of the box or

you can customize your own.
2. Create a team project. Your team project will be based on your process template.
3. Add appropriate groups and members to your team project.
4. Decide on your iteration cycle duration for the project. This includes creating

iterations in your team project.
5. Capture your scenarios as work items in Team Foundation Server.
6. Determine which scenarios need to be completed for each iteration.
7. Define the quality of service requirements. Link the quality of service

requirements to your scenarios.
8. Break your scenarios down into stories to provide manageable work items for

developers. Obtain estimates from the developers for each work item.
9. Create a project schedule. Create a project schedule (by using Microsoft Project)

and adds it to the Team Project.
10. Define acceptance criteria. Define acceptance criteria for the work items (correlated

to the QoS requirements).
11. Define reporting requirements. Define your projects key performance indicators

and identify reporting requirements.

For more information on creating a Team Project and Managing it please see, “How To -
Manage Projects in Team Foundation Server”

Strategies for Team Projects
You need at least one Team Project to start working with Team Foundation Server. When
a project manager creates a new Team Project a team project Web site is created
containing document libraries with document templates, and stock reports. A work item
database is created for tracking all effort on the project and a methodology template is
installed that determines rules, policies, security groups, and queries for all work effort.
Additionally a source code branch is created for source control.

The structure of your Team Project should be guided by your requirements and might
change as your software development process evolves. There are three common strategies
for creating new team projects. You might use one of these strategies or a combination of
several. The three common strategies are:

• Team Project per application
• Team Project per release
• Team Project per team

Team Project per Application
This is the most common strategy for creating team projects. This approach is useful for
both large and small applications, as well as multiple releases of applications being
developed in parallel. With this approach, you create one project for each application
under development.

Team Project per Release
This approach is useful for large teams who are working on long running projects. After
every major release, you create a new project and have a clean start. With this approach
you don’t have to worry about carrying the pervious release baggage including work
items. Also, this approach provides you with the opportunity to improve the process
templates or use new ones based on your newly acquired experience and learning.

Team Project per Team
This approach is useful for large projects that span multiple teams, where central control
and activity monitoring is important. With this approach, you create a project for each
team. This approach closely aligns a team with the workflows defined in TFS work item
types and provides a unit of reporting that spans the entire team.

Key Project Management Features in Team Foundation
Server
Team Foundation Server consists of the following components:
• Process Management. Team Foundation Server process management includes MSF

process guidance as well as process templates that set up new team projects with
work item types, reports, a project SharePoint portal, and source control settings.

• Security and Permissions. New projects contain default groups and permissions that
map to common development team roles.

• Work Item Management. Each process template includes a set of work item types
customized for that process. For instance MSF CMMI contains many more work item
types than MSF Agile since it is a more formal process with more roles and activities.

• Progress and Reporting. Each process template includes a set of default reports that
you can use to track project progress and health.

Process Management
With Visual Studio Team System, the software development lifecycle and its associated
processes has have been made an integral part of software project development efforts.
By integrating the software process the lifecycle processes into Visual Studio Team
System, the process and handoffs are methodology for development controls team
interaction and activities automated between team members.

Process Templates
Visual Studio Team System uses process templates to define the set of instructions and
artifacts for setting up a new project. A process template is a self-contained set of
instructions that provide development teams with the methodology for a software
development imitative. A process template contains the following elements:
• Process guidance. This is supplied for each template, provides contextual

information, help and direction for team members who need assistance following or
understanding a particular activity. Process guidance is integrated into the Visual
Studio Help System.

• Document templates. These enable team members to create new documents such as
specifications, risks and project plans in a consistent manner.

• Work items and workflow. Work items have their own set of fields and rules which
determine the workflow of the work item and how team members can assign and
perform work.

• Security groups. These are used to define who can control and manipulate reports,
work products such as source code and documentation, and work items. Project
managers can administer security groups without needing to be Windows
administrators.

• Check-in policies. These can be used to enforce rules and quality gates for all code
checked into source control. For example, you can enforce that checked-in code
meets specific criteria, such as conforming to your corporate coding standards, or
passing unit tests. For more information about how to create and configure custom
check-in policies, see “How To: Create a Custom Check-in Policy.”

• Reports. These are used to monitor the ongoing performance and status of the
project. VSTS ships with many predefined reports including code quality reports,
schedule progress reports, test effectiveness reports and many others. You can create
your own report and customize existing reports.

MSF and CMMI Process Templates
There are two process templates available out-of-the box.

• MSF for Agile Software Development. This is a lightweight process for small, agile

or informal software projects. It is based on scenarios and context driven actions and
is project and team member (people) centric.

• MSF for CMMI® Process Improvement. This is designed for more mature
software projects. It extends MSF for Agile Software Development by providing
support for auditing, verification and formal processes. It relies on process and
conformance to process and is organization centric.

If the provided templates do not match your specific process requirements and
methodology closely enough, you can add new process templates to the system, and you
can customize the supplied templates to fit the needs of your organization. For more
information about customizing existing templates, see “How To: Customize a Process
Template.”

Security and Permissions
When you create a project in Team Foundation Server, four default groups are created for
that project regardless of your choice of process template. By default, each of these
groups has a set of permissions defined for them that govern what members of those
groups are authorized to do.

• Project Administrator
• Contributor
• Reader
• Build Services.

You can create security groups for your team project to better meet the security
requirements of your organization. Creating a security group is an efficient way to grant a
specific set of permissions to a group of users on your team project. Make sure that you
allow only the minimum permissions necessary for the group, and add only those users or
groups who must belong to this new team project group

After you have created a team project group, you must add the new group, give the group
the appropriate permissions, and add members to the group. By default, a team project
group is created without any permission granted.

Work Item Management
Work Items are used as units of work for communication and collaboration between the
team. Your selected process template provides an initial set of work item types and
project managers then create and manage additional work items that need to be
completed on a development project. A work item might define a task, risk, scenario,
bug, or quality of service requirement. You can link work items together to provide better
traceability. For example, you could associate a specific work item task with the related
scenario or quality of service requirement to which that work items relates.
The process template provides the definitions for the work item types including the set of
fields defined for each work item type. Hence selection of the process template is
important, because it can't be modified during the project. If required you should
customize the process template to include any additional work item types other then the
once provided by the base templates.

There are number of work-items predefined in both the out of box process templates.

MSF for Agile Software Development
The work item types provided by this process template include:

• Scenario – Used to represents a user interaction with the application system. It

records the specific steps that need to reach a goal. When writing scenarios, be
specific as there may be many possible paths.

• Task – Used to represents a unit of work that needs to be performed. Each role has its
own requirements for a task. For example, a developer uses development tasks to
assign work.

• Quality of Service Requirement – Used to document the characteristics of the
system such as performance, load, availability, stress, accessibility and serviceability

• Bug – Used to communicate a potential problem in the system.
• Risk – Used to identify and manage the inherent risks of a project.

MSF for CMMI® Process Improvement
The work item types provided by this process template include:

• Requirement – Used to capture the requirements captured during the requirements

gathering phase.
• Change Request – Used to capture any change requests subsequent to requirements

gathering.
• Issue – Used to capture issues to be tracked in the projects.
• Task – Used to represents a unit of work that needs to be performed. Each role has its

own requirements for a task. For example, a developer uses development tasks to
assign work.

• Review – Used to represent the review work unit with in the projects, like code
review, design review etc.

• Bug – Used to communicate a potential problem in the system.
• Risk – Used to identify and manage the inherent risks of a project.

Microsoft Project Integration
Installing Visual Studio Team System or the Team Explorer application provides
extensions for Microsoft Project. For large projects where you have large number of
resources, you can use Microsoft Project, to manipulate schedule data within Team
Foundation Server.

For example, you can use Microsoft Project to manage and plan, assign, balance and
track work, and then publish the updates back to the work item database when they are
ready to be used by other team members.

For more information see “Working with Work Items in Microsoft Project” at
http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx

Microsoft Excel Integration
Installing Visual Studio Team System or the Team Explorer application provides
extensions for Microsoft Excel. For large projects where there huge number of work
items, you can use the Excel integration feature to create work items in the excel sheet
and upload to the work item database for to be used by other team members.

http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx

For more information see “Working with Work Items in Microsoft Project” at
http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx

Progress and Reporting
The reports provided with Team Foundation Server help you quickly assess the status of
the team project, the quality of the software under development, and the progress toward
project completion. These reports are generated from data maintained within the Team
Foundation data warehouse and they summarize metrics derived from work items, source
control, test results, and builds.

For example, you can use reports to tell you how fast your team is working from week-
to-week, based on their actual activities. The goals of the TFS reporting system consist of
providing integrated data from across team system components to enable project
managers and team members to understand the state of the software development project
and take action to ensure its success.

The process template you use to create your team project determines which reports are
available by default, but you can also add your own custom reports. The content and use
of each report created by the process template is explained in the process guidance for
that template. Team Foundation Server is built on SQL Server 2005 and uses SQL Server
to store everything about work items, quality attributes, testing, test results, and build
results. Team Foundation Server then uses SQL Server Analysis Services to aggregate
and analyze the data and drive the reports. The reports that are created by the process
template or by individual team members by using Microsoft Excel or Visual Studio 2005
Report Designer are made available through SQL Server 2005 Reporting Services and the
team SharePoint portal site.

For more information about customizing reports, see “How To: Create a custom TFS
Report.”

Additional Resources
• For more information see “Visual Studio 2005 Team System: Software Project

Management” at http://msdn2.microsoft.com/en-us/library/aa302181.aspx

http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa302181.aspx

Chapter 12 - Work Items Explained

Objectives
 Learn about the purpose and structure of work items.
 Describe work item workflow.
 Customize work items to meet your team’s need.

Overview
This chapter introduces you to work items and explains how you can use them to help
manage your software development projects. Each work item represents a unit of
work for your development team. A set of work item types are defined in the process
template you choose when creating a new team project.

Once the project has started you can create any of the available work item types to
track work. While default work item types and behaviour are defined in the process
templates, any aspect of a work item type can be modified to better fit the way your
team works.

How to Use This Chapter
 Read the “Work Item Structure” section to learn about predefined work item types

and how work item workflow is defined.
 Read the “Customizing Work Items” section to learn how and why you would

customize a work item type.

Scenarios and Solutions
Work items are the primary way that project managers and team leaders track the
work that remains to be done as well as the completed work. Team members use work
items to track their personal work queue and assign work to each other, for example in
the form of bugs or tasks.

The following are common uses of work items in team projects:
 Create user requirements or quality of service requirements for an application.
 Track development and testing against requirements.
 Create development tasks to represent the work necessary in order to implement

application components and features.
 Create bugs to represent defects in the implementation.
 Triage bugs and tasks so that they are appropriately prioritized and balanced

across the team.
 Track development tasks to determine progress toward code complete.
 Track bugs, along with other quality metrics, to determine quality of the

application and ship-readiness.

How you use work items depends upon the work item types that are defined for your
project. The work item definitions are stored in the process template you choose when
the team project is first created. You can choose from the default templates, MSF for
Agile Software Development or MSF for CMMI Process Improvement, or you can
customize work items to meet your team’s specific needs and process.

Work Item Structure
Each work item type can be defined as follows:
 It has a purpose and intended use. For instance, bugs are used to track quality

defects, tasks are used to track scheduled work, quality of service requirements are
used to capture critical non-functional aspects such as security and performance
requirements.

 It has a workflow defined by states and transitions. For example, the steps from
opened to resolved to closed.

 A set of fields that can be set, queried, and reported on. For example, priority,
status and, iteration.

Work Item Types
MSF Agile and MSF CMMI each define a set of work items that map to the roles and
activities defined in the process guidance.

MSF Agile
MSF Agile contains the following work item types:
 Bug. Represents a problem or potential problem in your application.
 Risk. Represents a possible event or condition that would have a negative impact

on your project.
 Scenario. Represents a single path of user interaction through the system.
 Task. Represents the need for a member of the team to do some work.
 Quality of Service Requirement. Represents a requirement constraining how the

system should work.

MSF CMMI
MSF CMMI contains the following work item types:
 Bug. Represents a problem or potential problem in your application.
 Change Request. Represents a proposed change to your application.
 Issue. Represents a situation that may block work or is currently blocking work.
 Requirement. Represents a description of what your application should do to

solve a customer problem.
 Review. Represents the results of a code, design, or deployment review.
 Risk. Represents a possible event or condition that would have a negative impact

on the project.
 Task. Represents the need for a member of the team to do some work.

Work Item Workflow
Each work item has a pre-defined workflow representing each state the work item can
be in as well as transitions between states. Each state is naturally associated with a
role in TFS. For example when a tester opens a new bug in MSF Agile the state is
Active. When a developer fixes the bug the state is changed to Resolved. When the
tester verifies the fix the bug state is changed to Closed.

Workflow Examples
The following examples show workflow for two common work item types.

MSF CMMI Task
An MSF CMMI task has the following possible states:
 Proposed. For example, proposed by a developer, tester, or architect.
 Active. For example, accepted by a lead or manager.
 Resolved. For example, resolved by a developer.
 Closed. For example, tested and closed by a tester.

Figure 12.1 shows each state along with the possible transitions between the states.

Figure 12.1 Transition States for MSF CMMI

MSF Agile Bug
An MSF Agile Bug has the following possible states:
 Active. For example, opened by a tester.
 Resolved. For example, resolved by a developer.
 Closed. For example, tested and closed by a tester.

Figure 12.2 shows each state along with the possible transitions between the states.

Figure 12.2 Transition States for MSF Agile

Customizing Work Items
There are a few scenarios in which you may want to modify the work item types
defined in MSF Agile or MSF CMMI:
 A work item is missing a field that is important for your development process.
 A work item workflow does not match how your team works.
 You need a new work item type.

To support these scenarios, you can do the following in Team Foundation Server:
 Add/remove work item types.
 Modify fields in existing work items.
 Modify states and transitions in existing work items.

For more information about customizing work items, see “How To: Customize the
Process Template by using the Process Editor.”

Chapter 13 - MSF for Agile Software Development
Projects

Objectives
 Learn when to use the MSF for Agile Software Development (MSF Agile) process

template.
 Understand how teams typically use the MSF Agile process template.
 Customize the MSF Agile process template to meet your team’s needs.

Overview
The process defined by the MSF for Agile Software Development process template
incorporates key ideas from the Agile software movement, along with principles and
practices from the Microsoft Solution Framework (MSF). It is an agile software
engineering process that uses multiple iterations and a scenario-based approach for
building applications. The template provides the automation and guidance necessary
to support your team development, including configuration management, project
management, work item tracking, and a project portal for communication.

This chapter explains the workflow of a typical MSF Agile software development
project, shows examples of teams using the MSF for Agile Software Development
process, and describes the default template settings and what options you have to
customize the supplied template.

How to Use This Chapter
Read this chapter if you want to gain a better understanding of how the MSF Agile
process template and process guidance works as well as how it is has been used
successfully by various teams.

 Use “MSF for Agile Software Development Defaults” section. Read this to

understand the details of the MSF Agile process template including default
reports, work items, and permissions.

 Use the example sections. Read these to see how real teams have successfully
used MSF Agile to develop and release applications.

 Read “Chapter 14, Process Template Fundamentals.” If you would like to
learn more about process templates in general, read “Chapter 14, Process
Template Fundamentals.”

Work Flow for MSF for Agile Software Development
The MSF for Agile Software Development process template defines a set of tasks to
be performed during iterations by the various roles involved in a software
development lifecycle including business analysts, architects, project managers,
developers and testers. Figure 13.1 shows the key activities associated with each task.

Figure 13.1 MSF Agile Tasks, Roles and Key Activities

MSF for Agile Software Development Defaults
When you create a new team project by using the MSF for Agile Software
Development process template, a concepts page outlining the process guidance is
displayed in the main window of Visual Studio. This is your initial viewpoint into the
MSF for Agile Software Development process. You can also access this from the
project portal home page.

The configuration of the tooling goes well beyond the description of the process and
includes work items (such as scenarios, quality of service requirements, tasks, bugs,
and risks), project reports, roles (groups and permissions) and a project portal. Key
items supplied by the MSF Agile template include:

 Work items
 Groups and permissions
 Source control
 Areas and iterations
 Reports
 Portal

The following sections detail the important defaults available to you when using the
MSF for Agile Software Development process template.

Work Items
The MSF for Agile Software Development process template contains the following
work item types:

 Bug. Represents a problem or potential problem in your application.
 Risk. Represents a possible event or condition that would have a negative impact

on your project.
 Scenario. Represents a single path of user interaction through the system you are

building.
 Task. Identifies a specific item of work for a team member to perform.
 Quality of Service Requirement. Represents a non functional requirement such

as a security, performance or manageability requirement.

When you create a new team project based on the MSF for Agile Software
Development template, the following work items are created for you. This saves you
work by providing you with a common set of tasks that you need to perform at project
initiation.

 Set up: Set Permissions. Task to add team members to one of the four security

groups: Build Services, Project Administrators, Contributors, or Readers.
 Set up: Migration of Source Code. Task to migrate your existing source code

from Visual SourceSafe, if you moving an existing project to Team Foundation
Server. You should complete migration of source code before you grant team
members access to the team project.

 Set up: Migration of Work Items. If you are bringing an existing project into
TFS you can migrate work items such as bugs and tasks from Clearquest or a CSV
file. You should complete this migration of work items before you grant team
members access to the team project.

 Set up: Set Check-in Policies. Task to setup the business rules or policies that
surround source code check-ins.

 Set up: Configure Build. Task to create an initial source tree and set up the build
to run on a periodic, usually daily, basis.

 Set up: Send Mail to Users for Installation and Getting started. Task to send
an e-mail to team members that provides information about which Team
Foundation Server they should connect to, and which team project they should use
so they can get started working on the team project.

 Create Vision Statement. Task to create a vision statement for the project.
 Set up: Create Project Description on Team Project Portal. Task to change the

default project description to better describe the new team project; such as
describing project purpose, goals, or vision.

 Create Personas. Task to create personas interacting with the system.
 Define Iteration Length. Task to define the iteration cycle to be used by the

project. This depends upon the size of the project and complexity.
 Create Test Approach Worksheet including Test Thresholds. Upfront test

considerations.
 Brainstorm and Prioritize Scenarios List. Identify and prioritize key usage

scenarios.

 Brainstorm and Prioritize Quality of Service Requirements List. Identify non
functional QoS requirements such as security, performance and manageability
scenarios.

 Set up: Create Project Structure. Task to create the project structure that
captures what areas the development team will be working in.

 Create Iteration Plan. Decide how to divide your development efforts up into
iterations.

Reports
The following reports are available by default with the MSF for Agile Software
Development process template.

 Bugs by Priority. Are the correct bugs being found? This report shows you the

rate of high priority bugs found versus low priority.
 Bug Rates. How effectively are bugs being found, fixed and closed? This chart

shows trends over time for new bugs, bug backlogs, and bug resolution.
 Builds. What is the quality of a build? Provides a list of available builds including

build quality and other detailed information.
 Project Velocity. How quickly is the team completing work? This report shows

how quickly the team is completing planned work and show rates of change from
day to day.

 Quality Indicators. What is the quality of the software? This report collects test
results, bugs code coverage and code churn into a single report to track project
health.

 Load Test Summary. This report shows test results for load testing on your
application.

 Regressions. This report shows a list of all the tests that passed previously and
now are failing.

 Reactivations. How many work items are being reactivated? This report shows
work items that have been resolved or closed prematurely.

 Related Work Items. What work items are dependent on other work items? This
report shows a list of work items that are linked to other work items so you can
trace dependencies.

 Remaining Work. How much work is left to be done and when will it be
completed? This report shows work remaining, resolved and closed over time.
Projecting remaining work trends forward can enable you to predict the point at
which you will be code complete.

 Unplanned Work. How much unplanned work is there? This report charts total
work versus remaining work and distinguishes planned from unplanned.

 Triage. What work items need to be triaged? This report shows every work item
that is still in the proposed state.

 Work Items. What are the active work items? This report lists every active work
item.

 Work Items by Owner. How much work is assigned to each member of the
team? This report shows work items per team member.

 Work Items by State. How many active, resolved and closed work items are
there?

Groups and Permissions
The following groups are available by default in the MSF for Agile Software
Development process template.

 Readers. Members of this group have read access to the team project.
 Contributors. Members of this group can add, modify, and delete items within

the team project.
 Build Services. Members of this group have build service permissions for the

team project. This group is used for service accounts only.
 Project Administrators. Members of this group can perform all operations in the

team project.

Source Control
MSF Agile uses the following default source control settings:

 Multiple Checkout. By default MSF Agile allows multiple checkouts to enable

multiple team members to work on the same file at the same time. Any resulting
conflicts must be resolved at check-in time.

 Permissions. The default permissions on the source control is as follows:
• Project Administrators. Has all available rights.
• Build Services. Has rights to read, pend changes, check-in, label, start

build, and edit build.
• Contributors. Has rights to read, pend changes, check-in, check-out,

label, and start build.
• Readers. Has only read access to source control

Areas and Iterations
The out-of-box process template does not provide a classification structure for either
areas or iterations. The recommend approach is to carve out the areas based on the
component or features of the project. Iterations can be time based cycles for which
you will repeat particular set of major activities such as plan, develop, and test.

Examples of MSF for Agile Software Development
The following examples show how the MSF for Agile Software Development process
has been adopted and used by the patterns & practices team within Microsoft as well
as by a development team outside of Microsoft.

Example 1: patterns & practices Teams
The following example shows how a typical patterns & practices project is executed
by using the MSF for Agile Software Development process.

New project through iteration 0
The product manager:
 Interacts with customers and stake holders to gathers requirements. These are

captured in a Microsoft Word document called the Project Back Log.
 Creates a vision statement for the project by using Microsoft PowerPoint.
 Brain storms with customers and various stake holders and defines the scenarios

that will address the requirements and the vision of the project.

 Works with the project manager and other stake holders to prioritize the scenarios.

The project manager:
 Captures the scenarios as work items in Team Foundation Server.
 Decides the iteration cycle duration, depending upon the project size, and delivery

capabilities.

Pre-Iteration Planning
The project manager:
 Decides depending upon the priority which scenarios should be worked on during

the iterations.

The product manager together with the project manager:
 Creates Quality of Service Requirements (QoS) for the scenario. They then link

the quality of service requirements to the scenarios.

Iteration Planning
The project manager:
 Together with developers and other members, breaks the scenarios into

development tasks.
 Captures the development tasks in TFS and links them to the scenarios.
 Defines the acceptance criteria for each of the development tasks.
 Breaks the QoS into test tasks.
 Captures the test tasks in TFS and links them to the scenarios
 Defines the acceptance criteria for each of the test tasks.
 Schedules and assigns the tasks.

The developer:
 Estimates each development task.

Important – If it looks like the tasks (developer stories) might take longer than a day
or two to implement, then you should break these down into sub-stories.

The tester:
 Provide estimation for each of the test tasks.

During the Iteration
The project manager:
 Guides the iteration.

The developer:
 Writes code for the development task, and closes the tasks once the acceptance

criteria are met.

The tester:
 Executes the test tasks assigned to them and creates new bugs (work items) for

any issues identified.

After the Iteration
The project manager:
 Assesses the project progress, re-prioritizes the scenarios which are incomplete

from the current iteration.
 Provide a status report to stakeholders.
 Decides depending upon the priority which scenarios should be worked on during

each iteration.

The product manager:
 Adds any newly discovered scenarios.
 Reprioritizes scenarios (where necessary).
 Together with the project manager creates Quality of Service Requirements (QoS)

for the project. The product manager also links the quality of service requirements
to the scenarios.

Example 2: Field Customer Engagement
The following example shows how the MSF for Agile process is used by a field
customer engagement.

New project through iteration 0
The business analyst:
 Creates a short (one page) vision statement.
 Identifies an on-site customer who can be used to provide input and creates

personas.
 Brainstorms scenarios (just the names) with the customer.
 Prioritizes scenarios with the customer.
 Writes scenarios for the upcoming iteration.

The project manager:
 Gathers the developers together and obtains their estimates. The estimates are

rough orders of magnitude estimates.
 Checks if priorities change as a result of costs.
 Schedules scenarios for the upcoming iteration.

The architect:
 Divides scenarios into architecture tasks.

The developer:
 Divides scenarios into development tasks.
 Defines an appropriate build strategy (Continuous Integration if possible).

The tester:
 Divides scenario into test tasks.

During the Iteration
The project manager:
 Guides the iteration.
 Guides the project.

The architect:
 Defines the solution architecture.

The developer:
 Implements a development task.

The tester:
 Tests a scenario.

After iteration 0
The tasks change slightly at this point.

The business analyst:
 Updates personas (where necessary).
 Adds any newly discovered scenarios.
 Reprioritizes scenarios (where necessary).
 Writes scenarios for the upcoming iteration.

The project manager:
 Estimates any new scenarios.
 Schedules scenarios for the upcoming iteration.

The architect:
 Divides scenarios into architecture tasks.

The developer:
 Divides scenarios into development tasks.
 Updates the build process (Continuous Integration if possible).

The Tester
 Divides scenarios into test tasks.

Customizing MSF for Agile Software Development
Process
You can use two methods to customize the MSF for Agile Software Development
process template to suit your specific organizational requirements.

 Manually customize the XML files. This is manual process and hence is error

prone but it gives you fine grained control on the customization of the process
templates. For more information see “Customizing Process Templates” at
http://msdn2.microsoft.com/en-us/library/ms243782(VS.80).aspx,

 Process Editor tool available with Power Tools. The latest version of the TFS
Power Tools provides you with a user interface-based tool to view and customize
process templates. When connected to Team Foundation Server, you can use this
tool to customize work item type definitions and global lists on an active project.
For more information see “How To: Customize the Process Template by using the
Process Editor.”

http://msdn2.microsoft.com/en-us/library/ms243782(VS.80).aspx

PART VI

Process Templates

In This Part:

 Process Templates Explained

Chapter 14 – Process Templates Explained

Objectives
• Understand the purpose, content and structure of process templates.
• Learn the key differences between MSF Agile and MSF CMMI.
• Customize process templates to meet your team’s needs.

Overview
This chapter explains the role of process templates in Team Foundation Server. It identifies the
main features and main differences between the two supplied process templates: MSF Agile
and MSF CMMI.

Software‐development processes are complex, involving many levels of interdependent
activities. Processes are generally available in documentation form but are not enforced by
tools. This makes it difficult for development teams to learn and follow the processes
consistently. Project managers might use a variety of different tools for project management,
requirement management, bug tracking, or review management and they are often not
integrated in any way. By using different tools you make it difficult to enforce a consistent
methodology implementation across multiple projects and to generate consistent reports with
common understanding. This makes the process analysis unreliable, which makes it difficult to
identify process improvements over time.

Visual Studio Team System and Team Foundation Server provide an integrated environment
that supports most of the process activities involved in a software‐development project. TFS
implements its life‐cycle methodologies by using process templates. A process template is a set
of XML files that provides specifications for different artifacts and processes of a methodology.
This chapter explains the architecture of a process template and its components to give you a
better understanding.

If these are not a good match for your team’s development process you can create a new
process template or modify the existing templates. For example you can add new reports or
new work item types.

How to Use This Chapter
Use this chapter to understand process template architecture, structure and customization.

• Read the “MSF for Agile and CMMI Process Templates” section. Learn about the
default process templates and how to choose between them.

• Read the “Customizing Process Guidance” section. Learn how to customize the existing
process templates to better suit your team’s needs.

MSF for Agile and CMMI Process Templates
Out of the box TFS comes with two process templates MSF for Agile (MSF) and CMMI. These
are aimed at two different types of development. You use MSF for Agile if you are using an agile
methodology to build your software. MSF for Agile encourages test first development and other
agile practices. You use CMMI if you are following the Capability Maturity Model® Integration
methodology. This is a formal process aimed at improving the existing development process.
The templates differ in what they provide, for example, the default reports created are
different as are some of the work item types. These templates can easily be edited to suit the
needs of your project.

Customizing Process Guidance
The project you are creating may not fit the Process templates provided with VSTS. You may
simply need a different work item type or you are using an entirely different process
methodology. For example, if you are using SCRUM there is no mention of sprints in the current
process template. In these case you need to amend or replace the existing process template.

Process Template Architecture
There are three key pieces to the process template architecture:
• Process template plug‐ins
• XML process definition files.
• New Team Project Wizard

Process Template Plug­ins
Process template plug‐ins are components that run when a new team project is created. A plug‐
in sets up required files or configures data for its area. Following are the plug‐ins available out‐
of‐box with the Team Foundation Server.
• Classification – It defines a team project’s initial iteration and areas
• Groups and Permissions – It defines a team project’s initial security groups and their

permissions
• Windows SharePoint services – It defines the project portal for the team based on a

SharePoint site template. Also defines template files and process guidance.
• Work Item Tracking – It defines a team project's initial work item types, queries, and work

item instances.
• Reports – It defines a team project's initial reports and sets up the report site.
• Version Control – It defines a team project's initial version control security permissions, and

check‐in notes

Each plug‐in can be modified to customize a process template. Except for the classification plug‐
in, plug‐ins can also be deleted to customize a process template.

XML Process Definition Files
The XML process definition files are a set of XML files that define a set of tasks that must run to
correctly configure a new team project for the process. When the New Team Project Wizard
creates a team project, it runs the required plug‐ins. Each plug‐in reads its corresponding XML
process definition file to obtain the list of tasks it must run. By using the XML process definition
files, you specify what configurations and settings the plug‐ins must implement. Following are
the details about the xml files.
1. Work Item Tracking XML – It is named workitems.xml and is located in the Work Item

Tracking folder in the process template folder hierarchy. There are three key types of tasks
to specify: work item types, work item queries, and work item instances.

a. Work Item Types – It defines the rules, fields, states, and transitions for an item of
work that will be tracked on a team project; such as tasks, bugs, requirements, etc.

b. Work Item Queries – It is used to find specific groupings of work items, such as tasks
or active bugs. Work item queries are specified in work item query (WIQ) files in the
Queries folder under the Work Item Tracking folder in the process template folder
hierarchy.

c. Work Item Instances – It is the initial set of work item instances that are already
created when team members begin working.

2. Classification XML – It is named as classification.xml and is located in the Classification
folder in the process template folder hierarchy. IT has two parts Iterations and Areas.

a. Iterations – It is used to define how many times the team will repeat a particular set
of major activities (such as plan, develop, test). Iterations affect work item queries
and reports because iterations are used to group work items.

b. Areas – It is used to organize work in the team project. For example, a team could
organize the product work such as UI area, Application area, and Database area.
Areas are used to group work items for queries and reports.

3. Windows SharePoint Services XML – It is named WssTasks.xml and is located in the
Windows SharePoint Services folder in the process template folder hierarchy. There are
three key tasks to specify: which site template to use, which document libraries to create,
and which folders and files to copy into the document libraries.

a. Site Template – You must specify a site template that the project portal is based on.
The site template also must be available on the Team Foundation Server SharePoint
Portal. Site templates are not included in the process template.

b. Document Libraries – After the project portal is created, you can specify that
additional document libraries be created.

c. Folders and Files – After the project portal is created, you can specify additional
folders to create. You can also specify files to copy such as template files.

4. Version Control XML – It is named VersionControl.xml and is located in the Version Control
folder in the process template folder hierarchy. It defines a team project's initial version
control security permissions, check‐in notes, and whether exclusive check out is required.

a. Check‐in Notes – It is provided by the developer when code is checked in to describe
how, or if, the code changes are related to team processes. For example, a check‐in

note can indicate if the change was part of a security review, and include details
about the changes relative to the security review.

b. Exclusive Check‐out – It is used to control whether multiple people can check out a
file at the same time.

c. Permissions – Specifying permissions will define what actions security groups and
individuals can perform on items under version control.

5. Reports XML – It is named ReportsTasks.xml and is located in the Reports folder in the
process template folder hierarchy. It defines the team project's initial reports.

a. Reports Site – The reporting site has a link to it on the project portal home page
labeled Reports.

b. Folders – You can create folders on the reporting site, folder appears on the project
site and under the Reports folder in Team Explorer.

c. Reports – Used to add reports using the .rdl files
6. Groups and Permissions XML – It is named GroupsandPermissions.xml and is located in the

Groups and Permissions folder in the process template folder hierarchy. It is used to define
the team project's initial security groups.

a. Groups – Used to specify a new Team Foundation Server security group.
b. Permissions – Each group you specify, you must also specify permissions.

New Team Project Wizard
The New Team Project Wizard is used to create new team projects. It uses the plug‐ins and the
xml process definition files for creating the project.

Customization Approach
The core methodology of customization of process template is
1. Review the out‐of‐box process templates and choose the one which is closet to your

organizational process.
2. Download the chosen process templates
3. Customize the process templates for various components of the process templates
4. Upload the customized template to TFS
5. Verify the changes made suits your process requirements.
This core approach is adopted and used by following solutions for customizing the process
templates
• Manually customize the XML files. This is manual process and hence is error prone but

gives fine grained control on the customization of the process templates. For more
information see “Customizing Process Templates” at http://msdn2.microsoft.com/en‐
us/library/ms243782(VS.80).aspx

• Process Editor tool available with Power tools. The latest version of power tool provides
you a UI based tool for viewing and customizing process templates. When connected to
Team Foundation Server, you can use this tool to customize work item type definitions and
global lists on an active project. For more information see “How To ‐ Customize the Process
Template using Process Editor” at <<Add link here>>

http://msdn2.microsoft.com/en-us/library/ms243782(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms243782(VS.80).aspx

Common Customization
Following are the set of the components which generally you will be customizing to adopt your
custom process.
• Groups and Permissions. The out‐of‐box process templates have a set of groups with

various permissions assigned to them. If the default groups and permissions associated with
them are not adequate or appropriate for your process requirements, you can update those
groups or create new groups. You can also add or remove individual users to a group or
grant and revoke permissions for a group.

• Source Control Check‐In Notes and Policies. The out‐of‐box process templates have a set
of Source Control Check‐In notes and Policies. If the default check‐in notes are not adequate
or appropriate for your process requirements, you can add or remove check‐in note fields,
or make some fields required and others not. If the default check‐in policies are not
adequate or appropriate, you can add, update, or delete individual check‐in policies.

• Areas and Iterations. The out‐of‐box process templates do not provide a classification
structure for either areas or iterations. You can customize the areas and iterations structure
as per the process requirements you have. The recommend approach is to carve out the
areas based on the component or features of the project. Iterations can be time based
cycles for which you will repeat particular set of major activities (such as plan, develop,
test).

• Team Portal. The out‐of‐box process templates provide a default team portal, which can be
central focus for communication among team members and others in the organization. You
can modify the team portal to change its appearance, behavior and content to suit your
process requirements.

• Process Guidance. The out‐of‐box process templates provide relevant process guidance
which explains the roles, forms, reports and work flow used in the team project. While
customizing the process template for your requirement, you will have to edit the process
guidance to reflect the changes for various components.

• Reports. The out‐of‐box process templates provide set of default reports. If the default
reports are not appropriate or adequate you can create your own custom reports for your
requirements.

• Customizing Work Item Types and Queries. The out‐of‐box process templates have a set of
Work item types, default work item instances and queries. If the default Work item types,
work item instances and queries are not adequate or appropriate for your process
requirements, you can customize work item types to fit your workflow or different types of
work items that you want to track. For example, you can:
o Add New work item type
o Remove existing Work item type
o Add default work item type instances
o Remove default work item type instances.
o Create your own public or private queries.

You can also modify an existing work item type. For example:
o Add fields.
o Rename fields.

o Restrict the list of allowed values for fields.
o Change the states and supported state transitions.
o Make fields required or read‐only.
o Make one field dependent on another.
o Automatically populate field values.
o Re‐arrange the appearance of information on the form.
o Change which Microsoft Project column a certain field is mapped to.

How Does It Work
• The user launches the New Team Project Wizard The Wizard asks for

o The name of the team project.
o The process template to be used when creating the team project.

• Which screens are displayed in the wizard are determined by which plug‐ins are used. For
example, if a process template does not include the Windows SharePoint Services plug‐in,
there is no screen presented to ask information about the project portal.

• After user finishes the wizard and clicks Finish, the wizard makes calls to the plug‐ins to
perform the work of creating the team project.

• The order in which the plug‐ins are called is determined by the XML process definition files.
• The wizard reads the instructions contained in the process template and then creates and

configures the items specified
• User do not need to specify in the wizard any details about the various types of work items

to be created because the instructions are already provided by the process template.
• If the wizard encounters a problem while creating the new team project, you will see an

error message describing the problem and suggesting corrective action.

PART VII

Reporting

In This Part:

 Reporting Explained

Chapter 15 - Reporting Explained

Objectives
 Describe Team Foundation Server reporting architecture.
 Identify the components that make up Team Foundation Server reporting.
 Describe the purpose of each available report.
 Know which process template contains which report.
 Customize and create new reports.

Overview
This chapter describes TFS reporting architecture and the common reports that you
can use with new team projects. It also connects common reporting scenarios with
reports available in Team Foundation Server (TFS), and describes common reasons to
customize existing reports or create new reports. TFS reporting enables you to view
aggregated data over many aspects of your team project. You can use this information
to analyze project progress, project health, and the effectiveness of your development
and test teams.

TFS reporting uses SQL Server 2005 Reporting Services to create, manage and run
reports. Each process template contains a pre-defined set of reports that you can use
from the start of your project. By using Reporting Services you can also amend these
reports and create custom reports for your project. You can add new reports to an
existing process template so that they are available for other team projects.

How to Use This Chapter
Use this chapter to understand how Team Foundation Server reporting works and how
it can help you assess project health and status.

 Read the “Scenarios and Solutions” section. Understand common reasons to

use TFS reporting and learn the purpose of each standard report.
 Read the “Physical Architecture” section. Learn what components make up the

reporting system and how they interrelate.
 Read the “Customizing Reports” section. Learn the mechanisms available for

report customization and creation.
 Read the companion How Tos. Read the following companion How Tos for a

step-by-step walk through of various procedures discussed in this chapter.
• How To - Customize a Report with Visual Studio 2005 Team

Foundation Server”
• How To - Create a Custom Report in Visual Studio 2005 Team

Foundation Server
• How To - Create a Risk Over Time Report with Visual Studio 2005

Team Foundation Server

Scenarios and Solutions
Reports are the primary way project managers and team leaders keep up to date with
an ongoing project. After you create a new team project a set of reports are generated
for you based upon the process template you choose. These reports are available to

you from the project SharePoint portal or from the reports node in Team Explorer
inside Visual Studio.

The following are common questions that can be answered by using TFS reports:
 When will my application be ready to ship?
 Is work proceeding according to plan?
 What is the quality of the build?
 What is the status of development against defined scenarios?
 How quickly is development work getting completed?
 Are bugs getting fixed?
 Are bugs regressing?

MSF Reports
Both the MSF for Agile Software Development and MSF for CMMI Process
Improvement process templates each include a set of reports by default.

Bugs
The bug related reports enable you to see the kind of bugs being generated and fixed
and to spot trends. The following bug related reports are available:

 Bugs by Priority. Are the correct bugs being found? This report shows you the

rate of high priority bugs found vs. low priority. This report is both of the supplied
process templates.

 Bug Rates. How effectively are bugs being found, fixed and closed? This report
shows trends over time for new bugs, bug backlogs, and bug resolution. This
report is available in both of the supplied process templates.

Release Management
Release management reports enable you to judge how close your software is to being
fit for release. The following release management reports are available:

 Actual Quality versus Planned Velocity. How many scenarios can be completed

before quality is unacceptable? This report presents the relationship, for each
iteration, of estimated size to overall quality. This report is available in both
process templates.

 Builds. What is the quality of a build? This report provides a list of available
builds including build quality and other detailed information. This report is
available in MSF for CMMI Process Improvement.

 Quality Indicators. What is the quality of the software? This report collects test
results, bugs code coverage and code churn into a single report to track project
health. This report is available in MSF Agile and MSF CMMI.

 Velocity. How quickly is the team completing work? This report shows how
quickly the team is completing planned work and show rates of change from day
to day. This report is available in MSF Agile and MSF CMMI.

 Scenario Details. What scenarios are we building the application against? This
report provides information on each scenario including completion status, risks
and testing progress.

Testing
Testing reports enable you to monitor the effectiveness and progress of your testing.
The following test reports are available:

 Regressions. What tests passed at one point but are now failing? This report

shows a list of all the tests that passed previously and now are failing. This report
is available in MSF CMMI.

 Requirements Test History. How well tested are my scenarios and
requirements? This report shows the progress of testing against defined scenarios
and requirements. This report is available in MSF CMMI.

 Test Failure Without Active Bug. Are there bugs to track every known defect?
This report shows any tests that have failed and are not associated with an open
bug. This report is available in MSF CMMI.

 Test Passing With Open Bug. Is the bug list up to date and consistent with
application quality? This report shows stale bugs for which tests are now passing.
This report is available in MSF CMMI.

 Load Test Summary. What are the results of load testing on application
performance? This report shows test results for load testing on your application.
This report is available in MSF Agile.

Work Items
Work item reports enable you to assess the current state of your project and current
project progress. The following work item reports are available.

 Open Issues and Blocked Work Items Trend. How many open issues remain?

This report shows the remaining open issues as well as the trend toward resolving
them. This report is available in MSF CMMI.

 Reactivations. How many work items are being reactivated? This report shows
work items that have been resolved or closed prematurely. This report is available
in MSF Agile and MSF CMMI.

 Related Work Items. What work items are dependent on other work items? This
report shows a list of work items that are linked to other work items so you trace
dependencies. This report is available in MSF CMMI.

 Remaining Work. How much work is left to be done and when will it be
completed? This report shows work remaining, resolved and closed over time.
Projecting remaining work trends forward can enable you to predict the point at
which you will be code complete. This report is available in MSF Agile and MSF
CMMI.

 Triage. What work items need to be triaged? This report shows every work item
that is still in the proposed state. This report is available in MSF CMMI.

 Unplanned Work. How much unplanned work is there? This report charts total
work versus remaining work and distinguishes planned from unplanned. This
report is available in MSF Agile and MSF CMMI.

 Work Items. What are the active work items? This report lists every active work
item. This report is available in MSF CMMI.

 Work Items by Owner. How much work is assigned to each member of the
team? This report shows work items per team member. This report is available in
MSF CMMI.

 Work Items by State. How many active, resolved and closed work items are
there? This report lists work items organized by state. This report is available in
MSF CMMI.

Customizing Reports
You might want a report that does not exist in either of the MSF process templates.
You can customize reports in one of three ways:

 Use a filter on an existing report. Many reports provide parameters that you can

use to filter the report. For example date, area, iteration, and priority filters are
available. Use these filters to review a subset of the data provided in the report.
These filters are temporary and are lost when you browse away from the report.

 Customize an existing report. If a report you want is similar to an existing
report, it is often easiest to make a copy of the existing report and modify it. For
instance, you may want to plot risks over time to analyze how well you team is
working with project risks.

 Create a new report. You can create a new report from scratch.

If you modify an existing report or create a new report from scratch you can publish it
to the report server so that it is available to the rest of your team. If you want to
modify an existing report or create a new report, you can use one of the following
methods:

 You can use the report designer available from the team reporting site.
 You can use Excel to create pivot tables from data in the reporting databases.
 You can create a new report server project in Visual Studio and then create new

reports or import existing reports.

Using a Report Server project in Visual Studio is the most powerful and flexible
method for report creation and modification.

More Information
 For more information about customizing an existing report, see “How To:

Customize a Report with Visual Studio 2005 Team Foundation Server”.
 For more information about creating a custom report, see “How To: Create a

Custom Report in Visual Studio 2005 Team Foundation Server.”
 For a step-by-step guide to creating a Risk Over Time report, see “How To:

Create a Risk Over Time Report with Visual Studio 2005 Team Foundation
Server.”

Physical Architecture
Team Foundation Server is built on SQL Server 2005 and uses SQL Server Analysis
Services to aggregate data and drive reports. You can create new reports by using the
process template or individual team members can use Microsoft Excel or Visual
Studio 2005 Report Designer. Reports are displayed through SQL Server 2005
Reporting Services and the team report site. Figure 15.1 shows the physical reporting
architecture.

Figure 15.1 Physical Reporting Architecture

Each component of Team Foundation maintains its own set of transaction databases.
This includes work items, source control, tests, bugs, and Team Build. To ease
reporting, this data is aggregated into a relational database from which you can
generate reports. The data is also placed in an OLAP cube to support trend-based
reporting and more advanced data analysis.

TFSWarehouse is a data warehouse designed to be used with queries rather than
transactions. Data is transferred from the various Team Foundation databases into this
warehouse for reporting purposes. The warehouse is useful for seeing current state of
project vs. seeing trends. TfsReportDS datasource points to TFSWarehouse. The
Team System data cube is an OLAP database that is accessed through SQL Server
Analysis Services. The cube is useful for data analysis of trends such as ‘how many
bugs closed this month versus last month?’ TfsOlapReportDS points to the Team
System data cube in the analysis services database.

Report System Components
The reporting system consists of the following server-side and client-side
components.

Server-Side Components
Server-side components include:
 Report server databases. These contain the report definitions, historical reports

and configuration data.

 Report server Web service. This provides programmatic access to the Report
Server.

 Report Manager Web site. This provides user access to Report Server through a
Web browser.

 Windows service. Provides the scheduling and delivery of report snapshots.

Client-Side Components
Client-side components include:
 Browser. To access the Report Manager Web site
 Team Explorer. To access reports through Visual Studio.
 Business Intelligence Designer Studio (BIDS). This enables developers to

design and deploy reports.
 Report Builder. This allows end users to design ad hoc reports.

Additional Resources
 Team Foundation Server Reporting: http://msdn2.microsoft.com/en-

us/library/ms194922(VS.80).aspx

PART VIII

Setting Up and Maintaining
the Team Environment

In This Part:

 Team Foundation Server Deployment

 Providing Internet Access to Team Foundation Server

Chapter 16 ­ Team Foundation Server Deployment

Objectives
• Learn the advantages and disadvantages of single‐server and multi‐server deployments.
• Select a deployment topology to suit your requirements.

Overview
This chapter outlines the main approaches and decision points when deploying Team
Foundation Server into your organization. The chapter explains deployment options and
describes how to choose between them.

There are two deployment options, single‐server or dual‐server. A single‐server installation
places the data‐tier and application‐tier on a single machine. A dual server splits the
application and data tiers onto separate servers. Additionally, the build server and the source
control proxy server may be installed on separate machines or as part of the data tier. Each
client requires access to the servers and the appropriate client side tools must to be installed.

How to Use This Chapter
Use this chapter to determine your Team Foundation Server deployment strategy.

• Understand TFS Architecture. If you are unfamiliar with the Team Foundation Server
architecture read the “TFS Architecture” section, or for more information read Ch 2 –
Team Foundation Server Architecture.

• Choose a deployment strategy. Read the “Deployment Scenarios” section to determine
which deployment strategy will work best for your team.

.

TFS Architecture

The TFS Architecture is made up of various tiers, the data tier, the application tier and the client
tier. These are logical separations, the data tier, application tier and client tiers can be installed
onto the same computer.

The Team Foundation data tier consists of Microsoft SQL Server 2005. There are a number of
databases installed that store the work items, the version control system, test results and any
reports.

The Application tier contains a Web based front end integrated into Internet Information Server
(IIS), the Team Foundation Web services and Sharepoint services. The application tier also
contains any build servers and source control proxy servers.

The client tier contains the applications that access Team Foundation Server. Developers use
Team Explorer to connect to Team Server, installed either as a standalone tool or as part of
Visual Studio 2005. Project Managers use Microsoft Excel or Microsoft Project. You can also
use third party tools to connect to the server.

For more information, see “Chapter 2 – Team Foundation Server Architecture”

Deployment Scenarios
You can deploy Team Foundation Server in different ways

• Single Server Deployment

o Within a Workgroup
o Using Active Directory

• Dual Server Deployment

Workgroup Deployment
You create a Workgroup where you have no Active Directory server. You use this installation
mode when you have a small team. If you use this installation mode each user will need a local
account on the server machine to allow them to log on to the server.For this deployment you can
only install onto a single server, dual server installation is not supported.

Deployment with Active Directory
If you have an Active Directory then you have two deployment choices. You can install both the
data tier and the application tier on the same server, or you can install the data tier and the
application tier on separate servers.

How to Think About Deployment
To decide if a single or dual server install is the right choice, consider the following questions:
• How many users do I need to support? If you plan to have more than 100 users, consider

whether a dual-server deployment might better suit your needs.
• How many projects will I be supporting with Team Foundation Server? If you are

supporting a large number of projects, consider whether a dual-server Team Foundation
Server deployment might better suit your business needs.

• Do I have a server I can dedicate to Team Foundation Server? The server in a single-
server Team Foundation Server deployment should be dedicated to Team Foundation Server
functionality. The Team Foundation server should not serve any other purpose, such as a
mail server, file server, or database server for other applications.

Advantages of Single­Server Deployments
• Simplicity You can manage all aspects of Team Foundation Server deployment on a single

server. You can configure all access rights and permissions for users and groups on one
server. You only have one server to schedule for backup and maintenance.

• Availability Because both the application tier and the data tier are present on a single
server, you do not have to consider network restrictions or network latency between the
application tier and data tier when planning your deployment.

Advantages of Dual­Server Deployments
• Scalability. Single-server deployments are designed for up to 100 users. A dual server

deployment will allow you to scale beyond this limit up to 500 users.
• Fail-over. You can redirect the application-tier server to a different data-tier server in case

of maintenance or repairs, and you cannot configure and deploy an additional server that
can act as a standby or fail-over application-tier server.

Single Server Deployment
Figure 16.1 shows a typical single server installation. Installed on the server are the Team
Foundation application and data tiers, along with SharePoint services and SQL Server 2005.

Figure 16.1 Single Server Installation

Dual Server Deployment
Figure 16.2 shows a typical dual server installation. The Team Foundation Application Tier is
installed along with SharePoint services on one tier. The Team Foundation Data Tier is installed
alongside SQL Server 2005 on another server.

Figure 16.2 Dual Server Installation

Other Servers
In either the single or dual tier installation you can install a separate Build server and a Proxy
server. These can be installed onto the same server as the application‐tier or onto different
servers.

Build Server Installation
Its possible to locate your build services on a separate server to improve the performance of your
build and reduce load on your application tier. If your application tier server performance is
impacted by frequent builds consider moving the build services to a separate server.

Team Foundation Proxy Server

The Team Foundation Proxy Server caches copies of source control files. You should use the
proxy server if you are accessing the source control server over a network and there is high
latency.

Team Foundation Server Topologies
Once you have decided on single or dual server installation there are several topologies you can
use. Topologies range from simple to complex. Each topology is designed for teams of certain
sizes.

Simple
Figure 16.3 shows a simple topology where the Team Foundation Server application-tier and
data-tier components are deployed to a single server. The Team Foundation Server Proxy is
deployed to a separate server. The server can be accessed from client workstations in the same
domain.

This configuration is best suited to small development teams or to pilot projects.

Figure 16.3 Simple Team Foundation Server Topology

Moderate
Figure 16.4 shows Team Foundation Server installed onto different tiers. The application
services are deployed onto one application-tier node and the databases onto a separate data-tier
node. The diagram also shows a test rig and Build servers being deployed to separate nodes. The
client nodes are either in the same domain as the servers or in a domain that has a trust
relationship with the servers.

Topologies of this complexity are targets for larger development teams in the range of 50 to 500
users.

Team Foundation
Server (Dual

Server)

Team
Build

Servers

Clients

Team Test Load Agent
Servers

App Tier Data Tier

Clients

Legend
HTTP(S)
MSSQL/TCP
.NET Remoting

Figure 16.4 Moderate Team Foundation Server Topology

Complex
This complex topology shown in figure 16.5 is similar to the moderate topology. In this topology
fail-over components have been added with an application-tier standby server and a data tier with
SQL clustering technologies.

The diagram also shows a geographically distant child domain that uses a limited bandwidth
connection. These clients use the Team Proxy server to improve access times to source control.

Team Foundation Server (Dual Server)

Team
Build

Servers

Team Test Load Agent
Servers

App Tier Data Tier

Clients

Legend
HTTP(S)
MSSQL/TCP
.NET Remoting

Clients

TFS Proxy

App Tier
Standby

Figure 16.5 Complex Team Foundation Server Topology

Additional Resources

For more information in installing Team Foundation Server see the installation guide at
http://go.microsoft.com/fwlink/?linkid=40042

http://go.microsoft.com/fwlink/?linkid=40042

Chapter 17 - Providing Internet Access to Team
Foundation Server

Objectives
 Provide remote access to your Team Foundation Server over the Internet.
 Learn how to protect and restrict access to your Team Foundation Server.
 Improve remote access performance by using the Team Foundation Server Proxy.

Overview
This chapter explains how to provide access to remote users over the Internet to your
Team Foundation Server (TFS). If you want to use Windows integrated authentication
or if you are using a version of TFS earlier than Service Pack 1 (SP1), then you must
setup a virtual private network (VPN) to provide external access to your server.

If you are using TFS SP1 and are satisfied with Basic or Digest authentication, you do
not need to use a VPN and you can set up a proxy server to support more efficient
remote access. By using a proxy server you improve performance for your remote
users by caching commonly accessed source control files.

How to Use This Chapter
Use this chapter to setup your Team Foundation Server for remote access over the
Internet.

 Use the scenarios list. Use this to quickly determine the correct approach you

should adopt to provide external Internet access to your server.
 Use the “Configuration Steps” section. Use this section to understand the high

level configuration steps required to configure your TFS installation for remote
access using Basic or Digest authentication over HTTPS.

 Use the referenced walkthroughs. Use the following walkthroughs for step-by-
step guidance to install and configure the certificates and SSL access to be used
with Basic and Digest authentication.
 “Walkthrough: Setting up Team Foundation Server with Secure Sockets Layer

(SSL) and an ISAPI Filter” at http://msdn2.microsoft.com/en-
us/library/aa833872(VS.80).aspx

 “Walkthrough: Setting up Team Foundation Server to Require HTTPS and
Secure Sockets Layer (SSL)” at http://msdn2.microsoft.com/en-
us/library/aa833873(VS.80).aspx

 Use the “Improving Remote Access Performance” section. Use this section to
identify ways of reducing the amount of traffic that needs to be sent over the
Internet.

Scenarios
The version of TFS you have installed and the type of authentication you want to use
to authenticate remote users governs the approach you should use to provide Internet
access to your server. The main scenarios are:

http://msdn2.microsoft.com/en-us/library/aa833872(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa833872(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa833873(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa833873(VS.80).aspx

 Using a VPN Connection. With this approach your remote development team
uses a direction VPN connection to your TFS server on your internal network. The
advantage of this approach is that it supports the use of Windows integrated
authentication. The disadvantage is that a VPN solution might not be permitted by
your company’s security policy. If you have Team Foundation Server without SP1
or you require Windows integrated authentication, then using a VPN connection is
your only option.

 Locating TFS in an Extranet. With this approach you install your TFS
infrastructure inside your perimeter network. You configure TFS to only accept
SSL requests, all users use Basic authentication, and all users use the same URL.
In this scenario you cannot use Active Directory features for example to add users
to TFS groups or add AD group to folders in source control.

 Publishing TFS through Microsoft Internet Acceleration Server (ISA) 2006.
With this approach, you install TFS on your internal network use ISA Web
publishing expose TFS to the external network. Remote users access TFS over
SSL and use Basic authentication. An advantage of this approach is that ISA
authenticates users and inspects traffic. The disadvantage of this approach is that
not all TFS features can be enabled. With this approach, you cannot use the
remote TFS proxy server, your remote users cannot remotely initiate builds or
access the build log from the build report, they cannot create new team projects
and they cannot manipulate Active Directory accounts in TFS.

Using a VPN Connection
If you are currently using TFS without SP1, you must use a VPN to provide remote
access. To avoid using a VPN and to provide protected access by using Basic or
Digest authentication over an HTTPS connection you must upgrade your installation
to TFS SP1.

For more information about creating a VPN, see
http://support.microsoft.com/kb/324747.

Using Basic or Digest Authentication
By using Team Foundation SP1, you can use either Basic or Digest authentication, by
configuring Internet Information Services (IIS) on your TFS application tier. With
Basic authentication, logon credentials are passed over the Internet using an
unprotected Base64 encoded format. To protect your client’s credentials you should
only use Basic authentication over an HTTPS connection that uses Secure Sockets
Layer (SSL).

Configuration Steps
To configure Basic or Digest authentication you must perform the following steps:

1. Install a server certificate on your Team Foundation Server. Before you can use

SSL with TFS, you must install the server certificate and then configure HTTPS
on the Team Foundation Server Web sites which include:
 The Default Web Site
 The SharePoint Central Administration Web site
 The Team Foundation Server Web site.

http://support.microsoft.com/kb/324747

 If you installed Build Services on one or more servers, you must install the
certificate on each of those servers. In order to perform builds over SSL, you
must install the certificate in the trusted root store on both the build server for
the account on which the build service is running and the computer that
initiates the build.

2. Configure your Team Foundation Server Web site to require SSL.
3. Configure your firewall to allow SSL traffic. You must configure your firewall to

allow for traffic on the SSL ports you specified in IIS for the various Team
Foundation Server Web sites listed above.

4. Configure your Team Foundation Server Web site in IIS to use Basic or Digest
authentication.

5. Configure the ISAPI filter to enforce the IP address rules. To do this you must
create an ISAPI initialization file in the same directory as the
AuthenticationFilter.dll file that is part of Team Foundation Server SP1. You must
also add the ISAPI filter to the registry.

6. Install certificates on your Team Foundation client computers. You must install
the server certificate (or a certificate higher in that certificate’s trust chain) on
every client computer that accesses Team Foundation Server. Additionally, if any
client computer has previously accessed a team project, you must clear the client
cache for every user who uses that computer to connect to your new Team
Foundation Server.

7. Update the registry for SQL Report Server so that reports are displayed correctly
on the team project portal sites.

8. Update SQL Server Management Studio with the HTTPS URL values for the
Windows SharePoint Services and Reporting Services Web sites.

If you use the Team Foundation Proxy Server at the remote location, you must
perform the following configuration:

1. Install a server certificate on each computer that you have installed Team

Foundation Proxy Server.
2. If you have configured automatic e-mail notification alerts, update the Web.config

file on your TFS Proxy Server computer to allow E-mail notification alerts.

For more information and details about how to follow this process see:
 “Walkthrough: Setting up Team Foundation Server with Secure Sockets Layer

(SSL) and an ISAPI Filter” at http://msdn2.microsoft.com/en-
us/library/aa833872(VS.80).aspx

 “Walkthrough: Setting up Team Foundation Server to Require HTTPS and Secure
Sockets Layer (SSL)” at http://msdn2.microsoft.com/en-
us/library/aa833873(VS.80).aspx

Configuring the ISAPI Filter
You can configure the ISAPI filter to enforce rules on any given set of IP addresses.
The ISAPI filter uses an AuthenticationFilter.ini file for its configuration settings.
You must configure this file with settings appropriate to your deployment. On the
application tier computer create a file to hold the addresses you are managing. The
file can use the following configuration keys and values:

[config]

http://msdn2.microsoft.com/en-us/library/aa833872(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa833872(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa833873(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa833873(VS.80).aspx

RequireSecurePort=false
ProxyIPList=ProxyAddress;
SubnetList=SubnetMask;

 ProxyIpList is the semi-colon list of IP address where traffic will appear from

that will use Basic/Digest authentication.
 SubnetList is the semi-colon separated list if IP address/subnet mask pairs that

you do not want to enforce basic/digest for
 RequireSecurePort If you configure RequireSecurePort as False, only the

connections using the addresses specified in ProxyIPList will be required to use
HTTPS/SSL and either Digest or Basic authentication.

Important. Adding a ProxyIPList causes SubnetList to be ignored

Name this file AuthenticationFilter.ini and save it in the same directory as
AuthenticationFilter.dll. By default, this directory is C:\Program Files\Microsoft
Visual Studio 2005 Team Foundation Server\TF Setup

Next, you must add entries to the Windows registry to enable the filter. You can use
the following commands:
 Reg.exe add

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\A
pplication\TFS ISAPI Filter" /v EventMessageFile /t REG_SZ /d
%windir%\Microsoft.NET\Framework\v2.0.50727\EventLogMessages.dll /f

 reg.exe add
"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\A
pplication\TFS ISAPI Filter" /v TypesSupported /t REG_DWORD /d 7 /f

Finally, add the ISAPI filter to your Team Foundation Server Web site. Set the name
of the filter to TFAuthenticationFilter and the default location is C:\Program
Files\Microsoft Visual Studio 2005 Team Foundation Server\TF
Setup\AuthenticationFilter.dll.

Improving Remote Access Performance
To help improve the performance experienced by your remote team, you should
install and configure Team Foundation Server Proxy in the remote office. This
improves performance by caching source control files on the remote office’s proxy
server.

To configure and optimizing proxy performance:
• Make sure caching is enabled and monitor the performance of your cache.

Monitor the performance counters (installed by default) and event logs (for
errors/warnings) on your proxy server on a periodic basis, to see how your proxy
is performing. Note that TFS proxy saves cache performance statistics to an XML
file called ProxyStatistics.xml and you can change the interval for saving these
statistics. The ProxyStatistics.xml file is located in the App_Data folder in the
proxy installation directory.

• Run a scheduled task to retrieve the latest files on a periodic basis to the proxy
server. This helps to ensure that the latest version of the files are available in the

proxy cache and to ensure that subsequent client requests for these files result in a
cache hit.

• If you know that large files are going to be downloaded over a low bandwidth (<
3Mbps) network, then set the executionTimeout configuration to an appropriate
value in Web.config. The default value is one hour <httpRuntime
executionTimeout="3600"/>.

• Disable the proxy on the clients if the proxy is going to be down for an extended
period of time. Do this to prevent fruitless reconnections. By default, these are
attempted every 5 minutes.

• Consider using workspace cloaking to hide specific workspaces from being
viewed and to prevent unnecessary file transfers. Cloaking hides specified
workspace folders from view and also increases performance bandwidth and
conserves local disk space by preventing folders and files that you do not
currently require from being copied to your local workspace. Although you can
cloak an existing folder mapping in your workspace, a better approach is to create
a new folder mapping specifically intended to be cloaked.

For more information about these performance optimization guidelines, see
“Distributed / Remote Development” in “Guidelines: Visual Studio 2005 Team
Foundation Server Source Control.”

Additional Resources
• To learn more about the Team Foundation Server Proxy, see “Team Foundation

Server Proxy and Source Control”: http://msdn2.microsoft.com/en-
us/library/ms252490(VS.80).aspx

• For more information about examining TFS proxy performance, see:
http://msdn2.microsoft.com/en-us/library/ms252455(VS.80).aspx

• To learn more about the TFS Proxy File Cache Server, see the MSDN Webcast:
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-
US&EventID=1032291120&CountryCode=US

http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252455(VS.80).aspx
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-US&EventID=1032291120&CountryCode=US
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-US&EventID=1032291120&CountryCode=US

Guidelines: Source Control

Index

Accessing Version Control
• Consider using command line tools
• Use Team Foundation Power Tools to unshelve a change
• Use Team Foundation Power Tools to rollback a change
• Use Team Foundation Power Tools to work offline
• Use Team Foundation Power Tools to get a changeset
• Use Team Foundation Power Tools to remove pending edits

Administration
• Turn off inherited permissions on maintenance branches
• Deny check‐in permissions to developers you don’t yet trust to make changes to your

source

Branch / Label / Merge
• Use labels to mark builds you might need to return to
• Use branches to isolate supported releases
• Plan your branching structure along merge paths
• Branch at a high level, including configuration and source files
• Do not branch too deeply
• Do not branch unless you need to
• Avoid baseless merges where possible
• Prefer full merges to cherry‐pick merges
• Merge frequently
• Always create a top‐level folder for a new team project to serve as a main branch
• Before merging consider using the candidate or preview switch to double check
• When renames are part of the merge pay close attention to the path that the tool

recommends
• Be careful when resolving merge conflicts.
• Check‐in the results of one merge at a time.
• Build and run tests after the merge and prior to checkin

Check­in and Check­in Policies
• Only check‐in your code when you are ready to share it.
• Use shelvesets to backup or share pending changes
• Resolve one work item per check‐in

• Use check in policies to enforce coding standards
• Use check in policies to enforce a code quality gate
• Detect when a policy has been overridden
• Plan to avoid conflicts

Checkout, Get, and Lock
• Get latest source before making changes.
• Use the Lock command with discretion.
• Communicate with your teammates when locking files

Distributed / Remote Development
• Make sure you get an appropriate sized disk drive for your proxy
• Create a scheduled task to pull the latest files on a periodic basis.
• Monitor proxy performance counters and event log periodically.
• Configure executionTimeout based on file sizes and bandwidth
• Don’t add an AT to Proxy.Config, if that AT is going to be used only for a short period

of time
• Disable the proxy if the proxy is going to be down for an extended period of time
• Consider workspace cloaking to reduce unnecessary file transfers

Migration
• Use the VSS converter to migrate to Team Foundation Source Control
• Migrate from other source control systems to Team Foundation Source Control

Project / Workspace Management
• To isolate a single developer use workspaces not branches
• Delete and rename files by using source control, not Windows Explorer.
• Only delete and rename with your solution open
• Create one team project per application if you want to move your assets between

application versions
• Create one team project per version if you want to start fresh with each application

version
• Use branching to share code and binaries that require integration testing
• Avoid workspace mapping to support cross‐project dependencies
• Create workspace mappings at the team project root level
• On shared computers, use a unique local folder path
• Consider mapping only part of the source tree
• Structure your source tree to support branching

Shelving
• Use shelving to share pending changes for review or hand off

• Use shelving to backup pending changes to the server
• Use shelving if interrupted by higher priority work

Accessing Version Control
• Consider using command line tools
• Use Team Foundation Power Tools to unshelve a change
• Use Team Foundation Power Tools to rollback a change
• Use Team Foundation Power Tools to work offline
• Use Team Foundation Power Tools to get a changeset
• Use Team Foundation Power Tools to remove pending edits

Consider Using Command Line Tools
For operations not available from Visual Studio or if you need to schedule operations,
consider using command line tools such as Tf.exe provided with Team Foundation
Server and the Team Foundation Power Tools tool (Tfpt.exe) available as a separate
download. You can use the command line tools to schedule operations by using the
Windows Task Scheduler.

To ensure the appropriate path and other environment variables are setup, run Tf.exe
from the Visual Studio 2005 Command Prompt window or run the Vsvars32 batch file,
which is normally located in DriveLetter:\Program Files\Microsoft Visual Studio
8\Common7\Tools. The Tf.exe tool supports most source control commands including
Commands, Checkin, Checkout, Get, History, Shelve, Branch, Merge, Label, Status,
Undelete, and Undo.

The following are common operations you may want to execute from the command line
by using Tf.exe:

• Synchronize files from the server to your local machine – tf get
• Add a file to the server – tf add
• Check out a file for editing – tf checkout
• Check in pending changes – tf checkin
• Retrieve a particular changeset from the server – tf get /version

There are certain operations that you can only perform from the command line:
• Delete another user's workspace – tf workspace /delete
• Undo another user's check‐in – tf undo
• Unlock another user's lock – tf lock
• Define label scope – tf label
• Perform a baseless merge – tf merge

More Information
• MSDN: Walkthrough: Working with Team Foundation Source Control from

Command Line: http://msdn2.microsoft.com/en‐us/library/zthc5x3f.aspx

• For more information on commands only available from the command line, see
“Operations Available Only From the Command‐Line (Team Foundation Source
Control)”: http://msdn2.microsoft.com/en‐us/library/ms194957(VS.80).aspx

Use Team Foundation Power Tools to Unshelve a Change
The Team Foundation Power Tools (TFPT) provides version control functionality that is
not available from Visual Studio. For example, you can use it to help support offline
working or to perform rollback operations to undo check‐ins of a changeset. Consider
using TFPT if you need to unshelve a change.

The unshelve operation supported by TFS does not allow shelved changes and local
changes to be merged together. By using TFPT to unshelve a change from a change set,
if an item in your local workspace has a pending change that is an edit, and the shelved
change is also an edit, then TFPT can merge the changes with a three‐way merge.

You run this command from the command line by using Tfpt.exe

More Information
• You can download Team Foundation PowerTools from here:

http://go.microsoft.com/?linkid=5431080
• A forum to discuss Team Foundation Power Tools:

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1

Use Team Foundation Power Tools to Rollback a Change
Consider using TFPT if you need to rollback a change.The ability to undo a checkin of a
changeset is not directly supported by TFS. By using the TFPT rollback command, you
can attempt to undo any changes made in a specified changeset. Not all changes can be
rolled back but the rollback works for most scenarios.

You run this command from the command line by using Tfpt.exe

More Information
• You can download Team Foundation PowerTools from here:

http://go.microsoft.com/?linkid=5431080
• A forum to discuss Team Foundation Power Tools:

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1

Use Team Foundation Power Tools to Work Offline
Off‐line working is not supported natively by Team Foundation Server. If you want to
work off‐line you must adhere to the following strict workflow:

1. Manually remove read‐only flag
2. Edit files

3. Add or delete files
4. Run the Team Foundation Power Toy (TFPT) online command

Important: You must not rename any files while you're off‐line.

1. Manually remove read‐only flag

By default, all files in the workspace that have not been checked out are marked as
read‐only. When you work without a server connection, you must manually remove
the read‐only flag from files before editing or deleting them. To do this, right‐click
the file in Windows Explorer, click Properties, uncheck the Read‐only check box and
click OK. Alternatively, you can use the DOS command “attrib ‐r”

2. Edit files
You can now edit any files for which you have removed the read‐only flag.

3. Add or delete files
You can add or delete files for which you have removed the read‐only flag. Do not
rename files, because the TFPT online tool cannot distinguish a rename from a
deletion paired with an add. Note that you have to specify an option to the Tfpt
online command to get it to look for deletions, as this is a more time consuming
operation.

4. Run the TFPT online command
When you are back online, run the TFPT online command by typing "TFPT online" at
the command line. This command scans your workspace for writable files and
determines what changes should be pended on the server. If you have deleted any
files, use the /delete switch. This tells the tool to scan for deleted files in your local
workspace as well. The tool then displays the online window from which you can
choose which changes to pend into the workspace.

More Information
• You can download Team Foundation PowerTools from here:

http://go.microsoft.com/?linkid=5431080
• A forum to discuss Team Foundation Power Tools:

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1

Use Team Foundation Power Tools to Get Changeset
Consider using TFPT if you need to get a changeset.The TFPT GetCS command enables
you to get all the items listed in a changeset at that changeset version. This is useful if a
colleague has checked in a change which you need to have in your workspace, but you
cannot update your entire workspace to the latest version.

You run this command from the command line by using Tfpt.exe

More Information
• You can download Team Foundation PowerTools from here:

http://go.microsoft.com/?linkid=5431080
• A forum to discuss Team Foundation Power Tools:

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1

Use Team Foundation Power Tools to Remove Pending Edits
Consider using TFPT if you need to remove pending edits. The TFPT Undo Unchanged
command removes pending edits from files which have not actually been edited. This is
useful in a scenario where you check out a large number of files for edit, but only
actually make changes to a small number of them. You can back out your edits on the
unchanged files by running the TFPT UU tool, which compares hashes of the files in the
local workspace to hashes the server has to determine whether or not the file has
actually been edited

You run this command from the command line by using Tfpt.exe

More Information
• You can download Team Foundation PowerTools from here:

http://go.microsoft.com/?linkid=5431080
• A forum to discuss Team Foundation Power Tools:

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1

Administration
• Turn off inherited permissions on maintenance branches
• Deny check‐in permissions to developers you don’t yet trust to make changes to your

source

Turn off Inherited Permissions on Maintenance Branches
Once a branch is in maintenance, for example after you have shipped a version of your
software, you can turn off inheriting permissions to lock down the tree. Once you have
done this, you can grant individual users the pend‐change and check‐in permissions as
needed for hot fixes.

More Information
• For more information on removing permissions, see “How to: Remove Access to

Source Control Files”: http://msdn2.microsoft.com/en‐
us/library/ms400718(VS.80).aspx

Deny Check­in Permissions to Developers You Don’t Yet Trust to
Make Changes to Your Source
You can deny check‐in permissions on the source tree for un‐trusted developers, such as
new hires or interns. Make sure that you set your desired permissions (including
permissions for your own account) before turning off inheritance. Rather than check‐in
directly they can make pending changes and then shelve these changes. A more
experienced developer can unshelve the changes, review them, and then check them in.

More Information
• For more information on removing permissions, see “How to: Remove Access to

Source Control Files”: http://msdn2.microsoft.com/en‐
us/library/ms400718(VS.80).aspx

Branch / Label / Merge
• Use labels to mark builds you might need to return to
• Use branches to isolate supported releases
• Plan your branching structure along merge paths
• Branch at a high level, including configuration and source files
• Do not branch too deeply
• Do not branch unless you need to
• Avoid baseless merges where possible
• Prefer full merges to cherry‐pick merges
• Merge frequently
• Always create a top‐level folder for a new team project to serve as a main branch
• Before merging consider using the candidate or preview switch to double check
• When renames are part of the merge pay close attention to the path that the tool

recommends
• Be careful when resolving merge conflicts.
• Check‐in the results of one merge at a time.
• Build and run tests after the merge and prior to checkin

Use Labels to Mark Builds You Might Need to Return To
Use labels to mark daily builds so that you can easily view and retrieve the set of files
used for a particular build. Team Build automatically assigns a label to the set of files
associated with each build that it creates. Team build labels follow the format
“ReleaseType_Build#”, for instance, “Releasex86_20070226.1”.

While every team build is labeled, you may want to create your own labels for builds
that you are likely to want to return to, such as:

• An internal milestone, e.g. alpha release
• A build created after branch or external dependency integration

You should use a label naming convention that easily allows you to come back to it later
and know what it represents. Use labels that are clear about what they represent. For
example use a convention such as “AlphaBuild_20070112” composed of
“LabelName_Date”.

When you release a build to customer for which you will need to provide maintenance,
use a branch instead of a label to isolate future maintenance work on the release. You
can subsequently merge the branch with any fixes it might contain back into to your
main source tree.

To locate an existing label, from the File menu, point to Source Control, Label and click
Find Label. Having found the label you can modify it or delete it from within the Find
Label dialog box.

More Information
• For more information, see “Working with labels”: http://msdn2.microsoft.com/en‐

us/library/ms181439(VS.80).aspx
• For more information on labels, see “How to: Apply Labels”:

http://msdn2.microsoft.com/en‐us/library/ms181440(VS.80).aspx

Use Branches to Isolate Supported Releases
Create a branch containing the source code used to generate a supported release build.
This allows you to apply fixes and updates to the supported release version of your
software without impacting the continued development of your source code base which
continues along the main branch.

You continue to develop the next version of your application along your main branch in
parallel with the supported release branch. You can merge any stabilization changes you
made to the supported release branch into the main branch prior to releasing the next
version of your product.

The following is an example of what your branch structure may look like after you have
created a Maintenance branch used to support released versions of your software:

• Main – Integration Branch
o Source
o Other Asset Folders

• Maintenance – Container for maintenance branches
o Release 1 – Maintenance Branch

 Source

More Information
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For more information about branching strategies, see “Explained: Branching in Team
Foundation Server.”

• For an introduction to branching and merging, see “Branching and Merging Primer”:
http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Plan Your Branching Structure Along Merge Paths
You can only merge along existing branch paths by using Source Control Explorer. You
can do baseless merges along other paths from the command line, but this type of
merge is less intelligent, resulting in more merge conflicts, and additional conflicts in
future merges.

Keep the following in mind when you perform merges:
• Merging along the hierarchy, from parent to child or child to parent, results in fewer

conflicts than merging across the hierarchy.
• The branch hierarchy is based upon the branch parent and branch child, which may

be different than the physical structure of the source code on disk. For example:

o Physical Structure:
 Development – Folder for isolated development branches

• External ‐ External dependency branch
• Team 1 ‐ Team branch
• Team 2 ‐ Team branch

o Feature A – Feature branch
o Feature B – Feature branch
o Feature C – Feature branch

 Main – Integration branch
 Maintenance ‐ Folder for release branches

• Release 2 – Release Branch
• Release 2 Hot Fix 1 – Supported hot fix Branch

 Safe Keeping ‐ Folder for safe keeping branches
• Release 1 ‐ Safe keeping branch

o Logical Structure:
 Main

• External
• Team 1
• Team 2

o Feature A
o Feature B

• Maintenance
o Release 1
o Release 2

 Release 2 Hot Fix 1

More Information
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging Primer”:
http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Branch at a High Level, Including Configuration and Source Files
Branch at a high enough level that the branch you create is still compilable. For instance,
in the following source tree:
• Main ‐ container for all assets you need to ship the product

• Source ‐ container for everything you need to build
o Code ‐ container for source code
o Shared Code – container for source code that is shared from other

projects
o Unit Tests ‐ container for unit tests
o Lib ‐ container for binary dependencies

• Docs ‐ container for documentation that will ship with the product
• Installer ‐ container for installer source code and binaries
• Builds ‐ container for team build scripts
• Tests ‐ container for test team test cases

Branch at the level of the Source folder to ensure the new branch contains all source
and configuration files.

More Information
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging Primer”:
http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Do Not Branch Too Deeply
Do not branch too deeply as this will add to the time required to merge a change from a
child branch up to the topmost parent. For example, in the following branching
structure:

• Development – Container for development branches
o Development Branch

 Sub Branch
• Sub Sub Branch

• Main – Integration Branch
o Source
o Other Asset Folders

Merges result in fewer conflicts when performed along the branch hierarchy. Therefore,
if there is a change in the Sub Sub Branch that you would like to merge into Main you
would first need to merge with the Sub Branch and the Development Branch before
you can merge into Main. Each merge takes time to complete, resolve conflicts, build
and test which multiplies merge time by the level of branches you’ve created in your
branch structure.

More Information
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging Primer”:
http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Do Not Branch Unless You Need To
Do not branch unless your development team needs to work on the same set of files
concurrently. If you are unsure, you can label a build and create a branch from that at a
later point. Merging branches, especially if there are significant changes between them,
can be costly.

Merging requires one or more developers to execute the merge and sort out conflicts.
The merged source must be thoroughly tested as it is not uncommon to make bad
merge decisions that can destabilize the build.

Merging across the branch hierarchy is especially difficult and requires you to manually
handle many conflicts that could otherwise be handled automatically.

More Information
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging Primer”:
http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Avoid Baseless Merges Where Possible
Avoid baseless merges where possible. When performing a baseless merge Team
Foundation Server has no information describing the relationship of files and folders in
the branches being merged. This generally results in more merge conflicts, and can lead
to more conflicts in future merges.

Structure your branch trees so that you only need to merge along the hierarchy (up and
down the branch tree) rather than across the hierarchy. Branching across the hierarchy
forces you to use a baseless merge.

Keep the following in mind when performing merges:
• Merging along the hierarchy, from parent to child or child to parent, results in fewer

conflicts than merging across the hierarchy.
• The branch hierarchy is based upon the branch parent and branch child, which may

be different than the physical structure of the source code on disk. For example:

o Physical Structure:
 Development – Folder for isolated development branches

• External ‐ External dependency branch
• Team 1 ‐ Team branch
• Team 2 ‐ Team branch

o Feature A – Feature branch
o Feature B – Feature branch
o Feature C – Feature branch

 Main – Integration branch
 Maintenance ‐ Folder for release branches

• Release 2 – Release Branch
• Release 2 Hot Fix 1 – Hot Fix Branch

 Safe Keeping ‐ Folder for safe keeping branches
• Release 1 ‐ Safe keeping branch

o Logical Structure:
 Main

• External
• Team 1
• Team 2

o Feature A
o Feature B

• Maintenance
o Release 1
o Release 2

 Release 2 Hot Fix 1

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Prefer Full Merges to Cherry­pick Merges
Rather than picking individual changes to merge between branches (a cherry‐pick
merge), choose to merge the entire branch at once. It can be convenient to select
individual changes in a branch to merge with another branch. However, if a cherry‐
picked changeset falls in the middle of a future merge range, that changeset will be re‐
merged, potentially resulting in additional merge conflicts.

This is especially true for /discard merges run from the command line. The discarded
changeset can be picked up if it falls in the middle of a future merge range.

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Merge Frequently
Eliminate the latency between branches, especially when teams are working on the
same release but in their own isolated branch. This ensures compatibility between
changes.

The merge schedule depends on the complexity of your branch structure as well as the
individual needs of your development team. As an example, in a moderately complex
branch structure such as the one below the development branches may merge up to the
main branch daily and merge changes back from the integration branch every couple of
days.

• Development – Folder for isolated development branches

o External ‐ External dependency branch
o Team 1 ‐ Team branch
o Team 2 ‐ Team branch

 Feature A – Feature branch
 Feature B – Feature branch
 Feature C – Feature branch

• Main – Integration branch
• Maintenance ‐ Folder for release branches

o Release 2 – Release Branch
o Release 2 Hot Fix 1 – Hot Fix Branch

• Safe Keeping ‐ Folder for safe keeping branches
o Release 1 ‐ Safe keeping branch

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Always Create a Top­level Folder for a New Team Project to Serve as
a Main Branch
Start any new team project by creating a folder, frequently called Main, underneath
your team project. Put all source for the Main branch in this folder. When you need to
create a new branch, branch directly from the Main folder.

The following example shows a typical branch structure:

• Development – Folder for isolated development branches, branched from Main
o Feature A

 Source
o Feature B

 Source
• Main – Integration Branch

o Source
o Other Asset Folders

• Maintenance – Folder for release branches, branched from Main
o Release 1 – Maintenance Branch

 Source

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Before Merging Consider Using the Candidate or Preview Switch to
Double Check
Prior to performing a merge use the candidate or preview switch to double check your
merge results. Although this option is only available from the command line it is
extremely beneficial to know which files and which versions will be merged when you
perform the merge command. For example, this can help to ensure that the scope of
your merge is not significantly greater than you were expecting and to make sure you
understand the impact of your merge command. For large merges, the merge report
also helps you to divide the work between individuals or teams.

To preview the results of a merge, use the Tf.exe command line with the merge
command together with the preview or candidate switches. For example:

Tf merge main/source development/feature/source /preview

The preview switch shows a preview of the merge while the candidate switch prints a
list of all changesets in the source that have not yet been merged into the destination.
The list includes the changeset ID that has not been merged and other basic information
about that changeset.

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

When Renames are Part of the Merge Pay Close Attention to the Path
That the Tool Recommends and Make Changes as Appropriate
When renames are part of the merge pay close attention to the path that the tool
recommends and make changes as appropriate (all renames are marked as conflicts).
The merge algorithm used by Team Foundation Server tries to calculate the best target
path when a rename is being merged over. In some cases the default target path is not
the desired one so you should always double check prior to committing the merged file.

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Be Careful when Resolving Merge Conflicts
Be careful when merging, it is easy to make mistakes that may result in build instability
When merging files:

• Double check the code you are merging before committing the merges.

• Check that you can compile the resulting merged file before checking it back into
source control.

• Check that the associated unit tests run and succeed before checking the merged file
back into source control.

• Make sure you understand the nature of the changes made by another developer. If
you are in doubt about merging some lines, talk to the developer who made the
other changes so that you are sure of their purpose and to get a second view on the
impact of your merge.

Once you are done merging, compile the resulting source and run unit tests to test for
major breaks.

More Information
• For more information about resolving merge conflicts, see “Resolving Conflicts” on

MSDN at http://msdn2.microsoft.com/en‐us/library/ms181432(VS.80).aspx

Check­in the Results of One Merge At a Time
Check in the results of one merge before performing a second merge that involves the
same files. Having performed the first merge, compile the code and ensure that the unit
tests succeed, and then check‐in your pending changes. Then begin the second merge
and repeat the process.

This helps to reduce complexity and by keeping the merges separate enables you to
undo changes if the need arises.

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Build and Run Tests After the Merge and Prior to Checkin
Having performed a merge, make sure that you compile the code and run the associated
tests before checking in the merged file. Do this to avoid introducing build instability as
a result of your merges.

The results of a merge are initially isolated within your workspace and are not uploaded
to the server until you check‐in the pending changes.

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Check­in and Check­in Policies
• Only check‐in your code when you are ready to share it.
• Use shelvesets to backup or share pending changes
• Resolve one work item per check‐in
• Use check in policies to enforce coding standards
• Use check in policies to enforce a code quality gate
• Detect when a policy has been overridden
• Plan to avoid conflicts

Only Check­in Your Code When You Are Ready to Share it
Only check your updated code into source control when it is fully unit tested and ready
to share with the rest of the team. Use shelvesets for intermediate work that is not yet
complete.

When you check‐in your code, it will be used as part of your next schedule build. Any
incomplete code is likely to cause build instability. Also, when you check‐in your code,
any other developer who does a get latest operation will pick up your changes. If they
are incomplete or inadequately tested they will cause problems for your colleague.

More Information
• For more information on check‐ins, see “How to: Check In Pending Changes”:

http://msdn2.microsoft.com/en‐us/library/ms181411(VS.80).aspx

Use Shelvesets to Backup or Share Pending Changes
Use shelvesets to backup files that contain pending changes you are not yet ready to
check in. You can also use shelvesets to share code for code review or if you are passing
off a development task to another developer. By using shelvesets you can upload your
pending changes to the server without checking in partially completed work that could
potentially lead to build instability.

To shelve a set of pending changes, first view them, by right‐clicking your solution in
Solution Explorer and clicking View Pending Changes. Select the files you want to shelve
and then click Shelve. Type a shelveset name, a comment that identifies the purpose of
the shelveset and then click Shelve.

To retrieve a shelveset, from the File menu, point to Source Control and then click
Unshelve. In the Owner name box, type the shelveset creator's name (for example,
Contoso\JimB or simply JimB) and then click Find. In the Results pane, select the
shelveset you want to unshelve into your workspace, and then click Details. If you want
to delete the shelveset as you retrieve it from the Team Foundation source control
server, deselect the Preserve shelveset on server option. Team Foundation restores
each shelved revision into the destination workspace as a pending change as long as the
revision does not conflict with a change that is already pending in your workspace.
Optionally deselect the Restore work items and check‐in notes option if you do not
want to have the work items and check‐in notes associated with the shelveset restored.
When the Details dialog box appears, select the shelveset or shelveset items you want
to unshelve into your workspace, and then click Unshelve.

More Information
• For more information see “How to: Shelve and Unshelve Pending Changes” at

http://msdn2.microsoft.com/en‐us/library/ms181404(VS.80).aspx

Resolve One Work Item Per Check­in
Having resolved a work item, check‐in your pending changes and update the work item
status. This practice serves the following purposes:

• It provides a consistent record in the source control database that can be used to

review changes per work item or back a work item out if necessary in the future.
• It ensures you don’t go too long between check‐ins. The longer you go between

check‐ins, the more likely that you will have a conflict that requires a manual merge
and additional testing.

More Information
• For more information on check‐ins, see “How to: Check In Pending Changes”:

http://msdn2.microsoft.com/en‐us/library/ms181411(VS.80).aspx
• For more items on work items and changesets, see “How to: Associate Work Items

with Changesets”: http://msdn2.microsoft.com/en‐us/library/ms181410(VS.80).aspx
• For more information on reviewing work item details, see “How to: View Work Item

Details from Pending Changes Window”: http://msdn2.microsoft.com/en‐
us/library/ms245467(VS.80).aspx

Use Check in Policies to Enforce Coding Standards
Use check‐in policies to enforce coding standards across your development team. Use
them to ensure that all source code checked into Team Foundation Server source
control meets your defined coding standards.

The code analysis check‐in policies that ship with Team Foundation Server enable you to
automatically run FxCop static code analysis on code as it is checked in to ensure that
the relevant rules are satisfied. You can fine tune the code analysis policy to check many
different rules. For example you can check rules governing design, interoperability,
maintainability, mobility, naming conventions, reliability and more.

To enforce a code analysis check‐in policy for a team project:

1. Right‐click your team project in Team Explorer, point to Team Project Settings and

click Source Control.
2. Click the Check‐in Policy tab and then click Add.
3. In the Add Check‐in Policy dialog box, select Code Analysis and click OK.
4. In the Code Analysis Policy Editor, select either Enforce C/C++ Code Anlysis

(/analyze) or Enforce Code Analysis For Managed Code. Select both if your project
contains a combination of managed and unmanaged code.

5. If you select manage code analysis, configure your required rule settings for
managed code analysis based on your required coding standards. This determines
precisely which rules are enforced.

You can also create a custom check‐in policy to perform checks that are not available by
default. For example, you can disallow code patterns such as banned API calls, or you
can write a policy to enforce your team's specific coding style guidelines, such as where
braces should be positions within your source code.

More Information
• For more information about creating and using a custom check‐in policy, see “How

To: Step Through Creating Custom Check‐in Policies for TFS.”
• To learn how to customize a check‐in policy, see “Walkthrough: Customizing Check‐

in Policies and Notes”, http://msdn2.microsoft.com/en‐
us/library/ms181281(VS.80).aspx

• To see sample code that will disallow selected patterns on checkin, see Checkin
Policy to Disallow Certain Patterns:
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx

• To see sample code that will enforce comments on checkin, see Sample Checkin
Policy: Make Sure the Comment Isn't Empty:
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx

• To learn how to register a new checkin policy, see I've Made a New Check‐In Policy!
How Do I Add It?:
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

Use Check in Policies to Enforce a Code Quality Gate
Use a combination of code analysis and testing policies to enforce a code quality gate.
For example, use the supplied testing policy to ensure that specific tests are executed
and passed prior to allowing source to be checked into Team Foundation Server source
control. You can also configure a code analysis policy to help ensure that your code
meets certain quality standards by ensuring that security, performance, portability,
maintainability and reliability rules are passed.

By enforcing this type of check‐in policy in addition to policies that enforce coding
standards and guidelines, you ensure your code meets a specific code quality gate.

To enforce a code analysis check‐in policy for a team project, you right‐click your team
project in Team Explorer, point to Team Project Settings and click Source Control. Click
the Check‐in Policy tab and then click Add and then select and configure the
appropriate policy.

More Information
• For more information about creating and using a custom check‐in policy, see “How

To: Step Through Creating Custom Check‐in Policies for TFS.”
• To learn how to customize a check‐in policy, see “Walkthrough: Customizing Check‐

in Policies and Notes”, http://msdn2.microsoft.com/en‐
us/library/ms181281(VS.80).aspx

• To see sample code that will disallow selected patterns on checkin, see Checkin
Policy to Disallow Certain Patterns:
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx

• To see sample code that will enforce comments on checkin, see Sample Checkin
Policy: Make Sure the Comment Isn't Empty:
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx

• To learn how to register a new checkin policy, see I've Made a New Check‐In Policy!
How Do I Add It?:
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

Detect When a Policy Has Been Overridden
Team Foundation Version Control does not prevent you overriding a policy. However,
you can use the following steps to detect if a policy has been overridden:

• Use the Team Foundation Eventing Service (from the Team Foundation Core Services

API) for hooking in to check‐in events.

• Write a Notify method that parses the details of the changeset and then react to it if
an override has occurred

Alternatively, you can manually scan changeset history to discover policy overrides.

More Information
• To learn more about overriding a check‐in policy, see “How to: Override a Check‐in

Policy”: http://msdn2.microsoft.com/en‐us/library/ms245460(VS.80).aspx
• To learn more about the Team Foundation Eventing Service, see “Eventing Service”:

http://msdn2.microsoft.com/en‐us/library/bb130154(vs.80).aspx
• To learn how to receive an e‐mail when a policy has been violated, see:

http://blogs.infosupport.com/marcelv/archive/2005/10/18/1635.aspx

Plan to Avoid Conflicts
Plan to avoid having multiple developers working in the same region of the same source
file at the same time. Do this to avoid conflicts that are potentially difficult to correctly
resolve. While automatic conflict resolution can resolve many conflicts, you should
avoid situations where two or more developers are working on the same method, or on
the same lines of code. Conflicts on the same lines of code require manual conflict
resolution, which complicates the merge operation. Effective team communication is
the key.

Before starting work on a file, make sure you have the latest version from source control
and check if anyone else has the file checked out before you begin work. If a colleague
has the file checked out, ask your colleague what he or she is working on and then
decide if you can wait until they complete their changes or if it is safe to continue to
work in parallel on the same file because you are working on separate functionality in
separate source code regions within the file.

To check if someone else has a file checked out:

1. Double click Source Control from the Team Explorer window in Visual Studio.
2. Browse to the folder containing the file you want to check in the source control

folder hierarchy. Any pending changes are listed together with the username of
the user who owns those changes.

To check which files people currently have pending changes for, run the following
command from a Visual Studio 2005 command prompt window.

Tf status /format:detailed /user:*

When you do begin working on a source file that you know others will work on in
parallel, let other team members know you are working on the file and which aspects
you will be updating.

More Information
• For more information on viewing pending changes in your workspace, see “How to:

View and Manage All Pending Changes in Your Workspace”:
http://msdn2.microsoft.com/en‐us/library/ms181400(VS.80).aspx

• For more information on viewing pending changes in other workspaces, see “How
to: View Pending Changes in Other Workspaces”: http://msdn2.microsoft.com/en‐
us/library/ms181401(VS.80).aspx

Checkout, Get, and Lock
• Get latest source before making changes
• Use the Lock command with discretion
• Communicate with your teammates when locking files

Get Latest Source Before Making Changes
To make sure you have the latest versions of all the source files for the project you are
working on, run a get latest command before you checkout a file for edit. The danger of
not doing so is that you locally build your code against non current source files. This
increases the likelihood of your code causing build problems when you subsequently
check it into the server.

To get the latest copies of the file set associated with a specific team project, right‐click
the team project in Source Control Explorer and click Get Latest Version. If you currently
have writable files with pending edits in your workspace this command does not
overwrite those files. You can run the same command from the command line by
running the Tf get /all command from a directory mapped to the current workspace.

More Information
• For more information about the Get command, see the "Get Command" on MSDN at

http://msdn2.microsoft.com/en‐us/library/fx7sdeyf(VS.80).aspx

Use the Lock Command with Discretion
Use the lock command sparingly because locking a file while you work on it can lead to
bottlenecks in the development process by preventing other people working on the
same file at the same time. You should only lock a file while editing it if you are
concerned that there will be a conflict resulting in a complicated manual merge
operation. Where possible, prefer shared checkouts by selecting the lock type None
when you check out the file.

The following are common scenarios where using a lock is appropriate to avoid conflicts:

• You are modifying a binary file format, such as an image or document, that cannot

be easily merged
• You are making such widespread changes to a file that any other developer working

on the same file would be very likely to make changes to the same lines as you.

If you do want to avoid any possibility of conflicts, use a check‐out lock which prevents
other people from checking out and checking in the same file. If you do lock a file, notify
your teammates when you lock a file and tell them why you are doing so and how long
your work on the file is likely to take. Also let them know when you remove the lock and
check your changes back in.

You specify your lock type when you check out a file for edit or you can explicitly lock a
file. To lock a file while checking it out, from Source Control Explorer, right‐click the file
and select Check Out for Edit. Then specify your lock type; None, Check Out or Check In.
To explicitly lock a file, right‐click the file and click Lock. Then choose the Check Out or
Check In lock type.

Note that unlike Visual Source Safe (VSS) behavior, checking out a file does not implicitly
get the latest version. Prior to locking a file make sure you have the latest version in
your workspace by clicking Get Latest Version.

More Information
• For more information about locks, see “How to: Lock and Unlock Folders or Files”:

http://msdn2.microsoft.com/en‐us/library/ms181420(VS.80).aspx
• For more informational about lock types, see: http://msdn2.microsoft.com/en‐

us/library/ms181419(VS.80).aspx

Communicate With Your Teammates When Locking Files
If you do lock a source file, let your team mates know so that they can plan their work
around the unavailability of the file. Explain why you need an exclusive lock on the file
and how long you are likely to retain the lock. By locking a file, you potentially introduce
a bottleneck into your development cycle, if other developers need to work on the same
source file.

Only lock a file while editing it if you are concerned that there will be a conflict resulting
in a complicated manual merge operation. Where possible, prefer shared checkouts by
selecting the lock type None when you check out the file.

To lock a file from Source Control Explorer, right‐click the file and click Lock. Then
choose the Check Out or Check In lock type.

More Information
For more informational on lock types, see: http://msdn2.microsoft.com/en‐
us/library/ms181419(VS.80).aspx

Distributed / Remote Development
• Make sure you get an appropriate sized disk drive for your proxy
• Create a scheduled task to pull the latest files on a periodic basis.
• Monitor proxy performance counters and event log periodically.
• Configure executionTimeout based on file sizes and bandwidth
• Don’t add an AT to Proxy.Config, if that AT is going to be used only for a short period

of time
• Disable the proxy if the proxy is going to be down for an extended period of time
• Consider workspace cloaking to reduce unnecessary file transfers

Make Sure You Get an Appropriate Sized Disk Drive for Your Proxy
Follow hardware recommendations in TFS install guide; specifically make sure you get a
disk drive with sufficient capacity. A maximum limit is set on the amount of storage
space the proxy can use for caching files. When this limit is reached, old files in the
cache are deleted to free up some storage space so that the space can be used for
caching newly requested files. Cleanup removes the files based on when they were last
accessed. Files that have not been served for the longest time are deleted first.

More Information
• To learn more about the Team Foundation Server Proxy, see MSDN: Team

Foundation Server Proxy and Source Control, http://msdn2.microsoft.com/en‐
us/library/ms252490(VS.80).aspx

Create a Scheduled Task to Pull the Latest Files on a Periodic Basis
Run a scheduled task to retrieve the latest files on a periodic basis to the proxy server.
This helps to ensure that the latest version of the files are available in the proxy cache
and to ensure that subsequent client requests for these files result in a cache hit.

More Information
• To learn more about the Team Foundation Server Proxy, see MSDN: Team

Foundation Server Proxy and Source Control, http://msdn2.microsoft.com/en‐
us/library/ms252490(VS.80).aspx

Monitor Proxy Performance Counters and the Event Log Periodically
Monitor Proxy Performance counters and the Windows event log for errors and
warnings on a periodic basis, to get a good picture of how your proxy is functioning.
Make sure proxy caching is enabled and monitor the performance of your cache.

You should observe the following performance counters:

• Current Cache Size
• Total Cache Hits ‐ count and percentage
• Total Download Requests
• Total Files in Cache
• Total Cache Miss ‐ count and percentage

These performance counters are registered when you install the proxy. The proxy
performance counters are multi‐instanced, which means there is a set of counters for
each application‐tier that you have configured in the Proxy.config file. By collecting this
data, you get an understanding of the performance when the proxy server is running.

Note that the TFS proxy saves cache performance statistics to an XML file called
ProxyStatistics.xml and you can change the interval for saving these statistics. The
ProxyStatistics.xml file is located in the App_Data folder in the proxy installation
directory.

More Information
• To learn more about the Team Foundation Server Proxy, see MSDN: Team

Foundation Server Proxy and Source Control, http://msdn2.microsoft.com/en‐
us/library/ms252490(VS.80).aspx

Configure executionTimeout Based on File Sizes and Bandwidth
If you know that large files are going to be downloaded over a low bandwidth (< 3Mbps)
network, then set the executionTimeout configuration to an appropriate value in
Web.config. Do this to reduce the likelihood of timeouts. The default value is one hour
as shown here:

<httpRuntime executionTimeout="3600"/>.

More Information
• To learn more about the Team Foundation Server Proxy, see MSDN: Team

Foundation Server Proxy and Source Control, http://msdn2.microsoft.com/en‐
us/library/ms252490(VS.80).aspx

Disable the Proxy if it is Going to be Down for an Extended Period of
Time
Disable the proxy on the clients if the proxy is going to be down for an extended period
of time. Do this to prevent fruitless reconnections. By default, these are attempted
every 5 minutes.

More Information
• To learn more about the Team Foundation Server Proxy, see MSDN: Team

Foundation Server Proxy and Source Control, http://msdn2.microsoft.com/en‐
us/library/ms252490(VS.80).aspx

Consider Workspace Cloaking to Reduce Unnecessary File Transfers
Consider using workspace cloaking to hide specific workspaces from being viewed and
to prevent unnecessary file transfers. Cloaking hides specified workspace folders from
view and also increases performance bandwidth and conserves local disk space by
preventing folders and files that you do not currently require from being copied to your
local workspace. Although you can cloak an existing folder mapping in your workspace,
a better approach is to create a new folder mapping specifically intended to be cloaked.

To cloak folders in a workspace:

1. In Visual Studio, from the File menu, point to Source Control, and then click

Workspaces.
2. In the Manage Workspaces dialog box, select the workspace you want to apply

cloaking to, and then click Edit.
3. In the Edit Workspace dialog box, in the Working folders list, either highlight the

folder mapping located under Source Control Folder and Local Folder that you want
to cloak, or create a new one.

4. Click in the Status column and change the setting from Active to Cloaked. Note that
you can only cloak folders in an actively mapped Team Foundation source control
folder.

5. Click OK to close Edit Workspaces and Close to close Manage Workspaces.

Note that your files do not disappear locally until you perform another get for the whole
workspace.

More Information
• To learn more about the Team Foundation Server Proxy, see MSDN: Team

Foundation Server Proxy and Source Control, http://msdn2.microsoft.com/en‐
us/library/ms252490(VS.80).aspx

Migration
• Use the VSS converter to migrate to Team Foundation Source Control
• Migrate from other source control systems to Team Foundation Source Control

Use the VSS Converter to Migrate to Team Foundation Source Control
Team Foundation Server ships with a VSS converter which allows you to migrate files,
folders, version history, labels, and user information from a Visual SourceSafe database
to Team Foundation Server Version Control.

The converter does have some limitations that are important to understand, for
example:

1. Historical information about file sharing is not preserved. Team Foundation Server

does not support sharing. The migration of a shared file results in copying the file to
the destination folder.

2. Historical information about branching is not preserved.
3. Team Foundation Server does not support pinning. Pinned files are migrated by

creating two labels.
4. Time stamps associated with actions are not preserved during migration.

More Information
• For more information about migrating files, see “How To: Migrate Source Code From

VSS to TFS.”

Migrate from Other Source Control Systems to Team Foundation
Source Control
You can manually export files from the version control system you are migrating from
and then import them into Team Foundation Server Version Control. If you need to
preserve file history or other attributes from the version control system you are
migrating from, you can use the TFS Migration and Synchronization Toolkit to write your
own migration tool.

Microsoft is currently working on a ClearCase converter, when it is ready it will be
announced on the TFS Migration blog: http://blogs.msdn.com/tfs_migration

Component software has created a converter that is compatible with GNU RCS, CS‐RCS,
GNU CVS, Subversion (SVN) and Visual SourceSafe (VSS)

More Information
• For more information on TFS migration, see the TFS Migration blog on MSDN:

http://blogs.msdn.com/tfs_migration

• You can download the TFS Migration and Synchronization Toolkit from CodePlex:
http://www.codeplex.com/MigrationSyncToolkit

• For more information on the component software converter, see:
http://www.componentsoftware.com/
Products/Converter/

Project / Workspace Management
• To isolate a single developer use workspaces not branches
• Delete and rename files by using source control, not Windows Explorer.
• Only delete and rename with your solution open
• Create one team project per application if you want to move your assets between

application versions
• Create one team project per version if you want to start fresh with each application

version
• Use branching to share code and binaries that require integration testing
• Avoid workspace mapping to support cross‐project dependencies
• Create workspace mappings at the team project root level
• On shared computers, use a unique local folder path
• Consider mapping only part of the source tree
• Structure your source tree to support branching

To Isolate a Single Developer Use Workspaces Not Branches
Use an additional workspace and do not create a new branch to isolate your work from
the rest of your team. Use your primary workspace to contain references to the files and
folders being worked on by the rest of the team (i.e. containing the shared source) and
create a second workspace to maintain the files and folders that you want to isolate.
You might want to isolate these files in order to evolve specific files in parallel with work
that is happening elsewhere. For instance, this can be used to work on risky pending
changes, or experimental changes. By using a second workspace, you reduce additional
branch and merge complexity.

To create a secondary workspace:

1. Click the Workspace drop down within Source Control Explorer and then click
Workspaces.

2. In the Manage Workspaces dialog box, click Add.
3. In the Add Workspace dialog box, enter a new workspace name such as

MyIsolatedWork and provide a comment to serve as a future reminder about
the purpose of the workspace.

4. In the Working folders list, set the workplace status to Active, identify the
source control folder to be included in the workspace (this can be the team

project root folder or any sub folder) and specify a local folder path on your own
computer to contain the files from the workspace.

5. Click OK and then Close to create the isolated workspace.

To retrieve the latest set of source to begin work in your isolated workspace:

1. In source control explorer, make sure that your isolated workspace name is
selected from the Workspace drop down list.

2. Select your team project root folder, or a sub folder if you only need part of the
source tree, right‐click and then click Get Latest Version. This copies the folder
structure and latest file set from the source control server to the local directory
on your computer which you mapped to the new workspace.

More Information
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms245466(VS.80).aspx

Delete and Rename Files by Using Source Control, not Windows
Explorer
If you need to delete or rename files that have been added to source control, delete or
rename them by using the Source Control Explorer or by using Tf.exe from the
command line. Do not delete or rename files by using Windows Explorer because doing
so forces your local workspace files to become out of synchronization with the source
control files maintained on the server.

To delete a file or folder by using Source Control Explorer:

1. Select the file or folder in Source Control Explorer.
2. Right‐click and click Delete. An icon that indicates the item is deleted appears

to the left and the status delete appears under the Pending Change column.
The item is deleted the next time you check the file in.

Note: You cannot delete an item for which another pending change exists. For example,
a checked out file cannot be deleted.

The Tf move, delete and rename commands are particularly useful if you need to
perform the operation on multiple files or folders. With Source Control Explorer you can
only move, rename or delete a single file or folder at a time.

More Information
• For more information about the Tf delete command, see "Delete Command" on

MSDN at http://msdn2.microsoft.com/en‐us/library/k45zb450(VS.80).aspx

• For more information about the Tf rename command, see "Rename Command" on
MSDN at http://msdn2.microsoft.com/en‐us/library/a79bz90w(VS.80).aspx

Only Delete and Rename with Your Solution Open
Delete and rename files inside Solution Explorer with your solution open. Do not do this
directly on disk. This approach ensures that when you next check‐in your pending
changes, Team Foundation Server Source control is kept in synchronization.

More Information
• For more information about the Tf delete command, see "Delete Command" on

MSDN at http://msdn2.microsoft.com/en‐us/library/k45zb450(VS.80).aspx
• For more information about the Tf rename command, see "Rename Command" on

MSDN at http://msdn2.microsoft.com/en‐us/library/a79bz90w(VS.80).aspx

Create One Team Project Per Application if You Want to Move Your
Assets Between Application Versions
If you want to carry forward not only source code but work items and other Team
Foundation Server assets between releases, consider using one team project per
application. When you use a single team project for multiple versions of the application,
all of the Team Foundation Server assets are carried forward automatically for you for
the next release. When you are ready to release a new version of your application you
can create a branch within the project to represent the release and isolate that code.

When using one project per application, keep the following in mind:
• Releases in parallel are forced to share work items schema, check in policies, and

process guidance.
• Reporting is harder since reports default to the entire project, you must add filtering

by release.
• If you have hundreds of applications, each in its own project, you’ll hit Team

Foundation Server performance and scale limits.
• You will accumulate ‘baggage’ over multiple releases. The easiest way to address

this issue is to create a new project and branch code you want to carry forward into
that project.

More Information
• For more information on using team projects, see “When to use Team Projects”:

http://blogs.msdn.com/ericlee/archive/2006/08/09/when‐to‐use‐team‐
projects.aspx

Create one Team Project per Version if You Want to Start Fresh With
Each Application Version
If you want each release to start fresh without carrying forward work items and other
Team Foundation Server assets, consider using one project per release. When you use a
new project for each release you can modify work item schema, workflow, check‐in
policies, and other assets without impacting the old release. This can be especially
useful if the old release will be maintained by a separate team such as a sustained
engineering team who may have a different process and workflow than your main
development team.

When using one project per release keep the following in mind:
• While it is very easy to move the source code from one project to another, it is

difficult to move work items and other TFS assets from one project to another.
Work items can only be copied one at a time to another project, if you want to copy
sets of work items you’ll need to write your own utility.

• If you have hundreds of applications and releases, each in its own project, you’ll hit
Team Foundation Server performance and scale limits.

• Pick a structure you can live with, restructuring existing team projects is difficult.
• Source can be easily shared amongst team projects:

o Branch source from one project to another
o Map source from another project into your workspace

• Team Foundation Serveer can scale to ~500 projects using MSF Agile process or 250
projects using MSF CMMI process. If you create your own or customize an existing
process keep in mind that work item schema has the largest impact on server
scalability. A complex schema will result in a server capable of supporting fewer
projects.

More Information
• For more information on using team projects, see “When to use Team Projects”:

http://blogs.msdn.com/ericlee/archive/2006/08/09/when‐to‐use‐team‐
projects.aspx

Use Branching to Share Code and Binaries that Require Integration
Testing
Managing shared code or binaries involves two steps:

1. Determine a location to store the dependency
2. Branch the dependency into your project

1. Determine a location to store the dependency

Options for storing:
• If the shared dependency is clearly owned by a particular team, store it in their

team project.

• If the shared dependency has no clear ownership, then create a team project
specifically for the shared code.

2. Branch the dependency into your project
Once you have stored the dependency branch the shared source or binaries into
your project. Every time you perform a merge from shared to consuming project you
will pick up latest source. This allows you to pick up changes on a regular schedule
and perform integration testing before impacting your main source tree.

More Information
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en‐us/library/aa730834(VS.80).aspx
• For more information on branching, see “How to: Branch Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181425(VS.80).aspx
• For more information on merging, see “How to: Merge Files and Folders”:

http://msdn2.microsoft.com/en‐us/library/ms181428(VS.80).aspx
• For additional descriptions of how to branch and merge in Visual Studio 2005, see

“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en‐us/library/ms181423(VS.80).aspx

Avoid Workspace Mapping to Support Cross­Project Dependencies
In general you should avoid dependencies that cross team projects and try to have all
the related/dependent solutions/projects under same team project. This reduces the
need for build script customization. If you have a dependency, use project references to
define it or branch the dependency from a shared project into your project. You should
avoid file references as they are more difficult to manage. The exception is when the
dependent project is developed in parallel and you need real‐time changes. In this case,
you can consider the using workspace mapping. You may still consider branching to
create a buffer of isolation, if the dependent code is causing too many breaking changes

More Information
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms245466(VS.80).aspx

Create Workspace Mappings at the Team Project Root Level
For new team projects, map your team project root ($/MyTeamProject) to a folder with
the same name on your local drive for example C:\TeamProjects. Because mappings are
recursive, your entire local folder structure is created automatically and will be exactly
the same as the structure in source control.

More Information
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms245466(VS.80).aspx

On Shared Computers, Use a Unique Local Folder Path
Two users of a single computer cannot share the same workspace mapping. For
example, you and a colleague cannot map the same team project ($/MyTeamProject) to
the same folder on the local computer. Instead, create mappings beneath My
Documents (although this leads to long location paths) or establish a team folder
naming convention on the local computer (e.g. C:\TeamProjects\User1,
C:\TeampProjects\User2 etc).

More Information
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms245466(VS.80).aspx

Consider Mapping Only Part of the Source Tree
To improve performance and reduce disk size requirements only map the files you need
for your development project. In general you will only need the files and projects
associated with the solution you will be working on.

More Information
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms245466(VS.80).aspx

Structure Your Source Tree to Support Branching
Your source tree structure consists of a combination of folder structure, file structure,
and branch structure. Within your main branch the following folder and file structure
has been proven to work for teams of various sizes:

• Main ‐ container for all assets you need to ship the product

o Source ‐ container for everything you need to build
 Code ‐ container for source code
 Shared Code – container for source code that is shared from

other projects
 Unit Tests ‐ container for unit tests
 Lib ‐ container for binary dependencies

o Docs ‐ container for documentation that will ship with the product
o Installer ‐ container for installer source code and binaries
o Builds ‐ container for team build scripts
o Tests ‐ container for test team test cases

Any branches that you create off of main will copy this folder and file structure into the
new branch. For example:

• Development – Development branch
o Source ‐ container for everything you need to build

 Code ‐ container for source code
 Shared Code – container for source code that is shared from

other projects
 Unit Tests ‐ container for unit tests
 Lib ‐ container for binary dependencies

• Main – Integration branch
o Source ‐ container for everything you need to build

 Code ‐ container for source code
 Shared Code – container for source code that is shared from

other projects
 Unit Tests ‐ container for unit tests
 Lib ‐ container for binary dependencies

o Docs ‐ container for documentation that will ship with the product
o Installer ‐ container for installer source code and binaries
o Builds ‐ container for team build scripts
o Tests ‐ container for test team test cases

More Information
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en‐us/library/ms245466(VS.80).aspx

Shelving
• Use shelving to share pending changes for review or hand off
• Use shelving to backup pending changes to the server
• Use shelving if interrupted by higher priority work

Use Shelving to Share Pending Changes for Review or Hand Off
Use shelving if you want to discuss or review your work‐in‐progress code with a remote
team member. Rather than emailing the code to them, you can shelve the code and
then have your remote colleague retrieve the files from the shelf.

Likewise if you want to pass partially finished work to another developer for completion
you can use shelving to hand the code off.

More Information
• For more information on shelving pending changes, see “How to: Shelve and

Unshelve Pending Changes”: http://msdn2.microsoft.com/en‐
us/library/ms181404(VS.80).aspx

Use Shelving to Backup Pending Changes to the Server
Use shelving if you have not completed work at the end of the day but want to ensure
that your current work is backed up on the server. By shelving your current changes, the
changes are applied to the TFS and can be retrieved by you (or others) the day.

More Information
• For more information on shelving pending changes, see “How to: Shelve and

Unshelve Pending Changes”: http://msdn2.microsoft.com/en‐
us/library/ms181404(VS.80).aspx

Use Shelving if Interrupted by Higher Priority Work
Use shelving if you are mid‐way through making changes to a set of source code, when
new higher priority work is allocated (for example an emergency bug fix is required). At
this point you need to go back to a stable version of the code but you do not want to
lose your changes. Before doing so you can shelve your code and easily retrieve it later
on.

More Information
• For more information on shelving pending changes, see “How to: Shelve and

Unshelve Pending Changes”: http://msdn2.microsoft.com/en‐
us/library/ms181404(VS.80).aspx

Additional Resources
• Visual Studio Team System Guidance Project:

http://www.codeplex.com/VSTSGuidance

Practices at a Glance: Source Control

Index
Accessing Version Control
• How to use version control from non-Visual Studio clients
• How to automate common version control tasks
• How to work off-line

Administration
• How to add a new developer to your project
• How to remove a developer who has left your project
• How to grant permissions within your source tree

Branch/Label/Merge
• How to use labels
• How to branch
• How to plan your branching structure
• How to use branching to support a release
• How to use branching to maintain a previous release
• How to use branching to stabilize your development and build process
• How to use branching to stabilize feature development
• How to use branching to stabilize development across teams
• How to use branching to isolate external dependencies
• How to retire an old release
• How to perform a merge
• How to perform a baseless merge
• How to resolve merge conflicts

Builds
• How to use TFS to perform continuous integration builds
• How to build and run tests after a merge

Check-In and Check-In Policies
• How to work with source control change sets
• How to enforce coding standards prior to check-in
• How to override a check-in policy
• How to undo a check-in
• How to resolve a conflict
• How to avoid conflicts

• How to create a custom check-in policy

Checkout, Get and Lock
• How to synchronize your computer with TFS
• How to prepare a file for editing

Code Sharing
• How to share code
• How manage shared binaries

Distributed/Remote Development
• How to access TFS over the Internet
• How to support a remote office

Migration
• How to migrate your source from Visual SourceSafe
• How to migrate your source from other version control systems
• How to move Team Foundation Version Control to another server

Project/Workspace Management
• How to choose one team project vs multiple team projects
• How to organize your source tree
• How to define workspace mappings
• How to use workspaces to isolate code changes on your computer

Security
• How to secure the channel between developer workstation and TFS

Shelving
• How to use shelving to backup pending work
• How to use shelving to share code with a team member

Accessing Version Control
• How to use version control from non-Visual Studio clients
• How to automate common version control tasks
• How to work off-line

How to Use Version Control from Non-Visual Studio Clients
You can access Team Foundation Version Control from other clients by using one of the
following approaches:
• MSSCCI Integration
• Third-party Integration
• Custom Integration

MSSCCI Integration
The following clients can work directly with Team Foundation Version Control by using
the MSSCCI provider:
• Visual Studio NET 2003
• Visual C++ 6 SP6
• Visual Visual Basic 6 SP6
• Visual FoxPro 9 SP1
• Microsoft Access 2003 SP2
• SQL Server Management Studio
• Sparx Systems Enterprise Architect 61
• Sybase PowerBuilder 105
• Toad for SQL Server 20

The MSSCCI provider behaves differently than Team Foundation Version Control in
Visual Studio 2005 in the following ways:
• Checkout also performs a GetLatest
• Exclusive check-in lock applied at checkout
• Open-from source control and save-to source control behave like Visual SourceSafe

You can download the MSSCCI provider from MSDN:
http://www.microsoft.com/downloads/detailsaspx?FamilyId=87E1FFBD-A484-4C3A-
8776-D560AB1E6198&displaylang=en

The MSSCCI provider is not supported by Microsoft. Use the MSDN forums if you have
questions:
http://forums.microsoft.com/MSDN/ShowForumaspx?ForumID=22&SiteID=1

Third-party Integration
The following clients have integration solutions provided by other vendors:
• Eclipse
• Linux client

http://www.microsoft.com/downloads/detailsaspx?FamilyId=87E1FFBD-A484-4C3A-8776-D560AB1E6198&displaylang=en
http://www.microsoft.com/downloads/detailsaspx?FamilyId=87E1FFBD-A484-4C3A-8776-D560AB1E6198&displaylang=en
http://forums.microsoft.com/MSDN/ShowForumaspx?ForumID=22&SiteID=1

• Mac client
• HTML Web client

If you want access to Team Foundation Version Control from the Eclipse IDE, Linux, or
Mac, consider installing Teamprise: http://www.teamprise.com/

If you would like read-only access to Team Foundation Version Control from the Web,
consider installing TeamPlain Web Access: http://www.devbiz.com/teamplain/

Custom Integration
Other clients have no integration solution currently available. You can either access
Team Foundation Version Control from the command line or build your own integration
solution

To learn more about working with Team Foundation Version Control, see MSDN:
Walkthrough: Working with Team Foundation Source Control from Command Line:
http://msdn2.microsoft.com/en-us/library/zthc5x3faspx

You can use control scripts and command files to automate the use of the command line
To learn more about working with control scripts and command files, see MSDN: Team
Foundation Source Control Scripts and Command Files: http://msdn2.microsoft.com/en-
us/library/1az5ay5c(VS80)aspx

Additional Resources
• You can download the MSSCCI provider from MSDN:

http://www.microsoft.com/downloads/detailsaspx?FamilyId=87E1FFBD-A484-
4C3A-8776-D560AB1E6198&displaylang=en

• If you want to access Team Foundation Version Control from the Eclipse IDE, Linux,
or Mac, consider installing Teamprise: http://www.teamprise.com/

• If you would like to access Team Foundation Version Control from the Web, consider
installing TeamPlain Web Access: http://www.devbiz.com/teamplain/

• To learn more about working with Team Foundation Version Control, see
“Walkthrough: Working with Team Foundation Source Control from Command
Line”: http://msdn2.microsoft.com/en-us/library/zthc5x3faspx

• To learn more about working with control scripts and command files, see “Team
Foundation Source Control Scripts and Command Files”:
http://msdn2.microsoft.com/en-us/library/1az5ay5c(VS80)aspx

• You can download the Visual Studio Team Foundation Server SDK from
http://go.microsoft.com/fwlink/?linkid=68586

• To learn more about Team Foundation Version Control extensibility, see
“Walkthru:The Version Control Object Model”: http://msdn2.microsoft.com/en-
us/library/bb187335(VS.80).aspx

http://www.teamprise.com/
http://www.devbiz.com/teamplain/
http://msdn2.microsoft.com/en-us/library/zthc5x3faspx
http://msdn2.microsoft.com/en-us/library/1az5ay5c(VS80)aspx
http://msdn2.microsoft.com/en-us/library/1az5ay5c(VS80)aspx
http://www.microsoft.com/downloads/detailsaspx?FamilyId=87E1FFBD-A484-4C3A-8776-D560AB1E6198&displaylang=en
http://www.microsoft.com/downloads/detailsaspx?FamilyId=87E1FFBD-A484-4C3A-8776-D560AB1E6198&displaylang=en
http://www.teamprise.com/
http://www.devbiz.com/teamplain/
http://msdn2.microsoft.com/en-us/library/zthc5x3faspx
http://msdn2.microsoft.com/en-us/library/1az5ay5c(VS80)aspx
http://go.microsoft.com/fwlink/?linkid=68586
http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx

How to Automate Common Version Control Tasks
To automate common version control tasks, use the Team Foundation command line tool
(TF.exe). With this tool you can do everything that you can do with Source Control
Explorer including source control operations (add, checkin, checkout, get, lock, label and
more), branching, shelving, workspace manipulation and general administration tasks.

The main reasons for using the command line tool include automating repetitive
operations and scheduling operations to run at specific times or on specific events by
using the Windows Task Scheduler. The following commands are also only available
from the command line: deleting another user's workspace, undoing another user's check-
out, unlocking another user's lock, defining label scope and performing a baseless merge.

To ensure the appropriate path and other environment variables are setup, run the
command line tool from the Visual Studio 2005 Command Prompt window or run the
Vsvars32 batch file, which is normally located in DriveLetter:\Program Files\Microsoft
Visual Studio 8\Common7\Tools.

Tf.exe is installed as part of the TFS client and is located by default in the following
folder:
C:\Program Files\Microsoft Visual Studio 8\Common 7\IDE.

To run the command line tool, you must specify a server name with the /s switch. The
following command shows how to view the files in source control on the server named
YourTFSServer.

tf.exe dir /s:YourTFSServer

Additional Resources
• MSDN: Walkthrough: Working with Team Foundation Source Control from

Command Line: http://msdn2.microsoft.com/en-us/library/zthc5x3f.aspx
• MSDN Team Foundation Source Control Command-Line Reference:

http://msdn2.microsoft.com/en-us/library/cc31bk2e(VS.80).aspx

How to Work Off-line
Offline working is not supported natively by Team Foundation Version Control.

To work off-line, you need to use the following strict workflow:
1. Manually remove read-only flag

By default, all files in the workspace that have not been checked out are marked as
read-only. When you work without a server connection, you must manually remove
the read-only flag from files before editing or deleting them. To do this, right-click
the file in Windows Explorer, click Properties, uncheck the Read-only check box
and click OK. Alternatively, you can use the DOS command “attrib -r”

2. Edit files
You can now edit any files for which you have removed the read-only flag.

3. Add or delete files
You can add or delete files for which you have removed the read-only flag. Do not
rename files, because the TFPT online tool cannot distinguish a rename from a
deletion paired with an add. Note that you have to specify an option to the Tfpt online
command to get it to look for deletions, as this is a more time consuming operation.

4. Run the TFPT online command
When you are back online, run the TFPT online command by typing "TFPT online"
at the command line. This command scans your workspace for writable files and
determines what changes should be pended on the server. If you have deleted any
files, use the /delete switch. This tells the tool to scan for deleted files in your local
workspace as well. The tool then displays the online window from which you can
choose which changes to pend into the workspace.

Important: You must not rename any files while you're off-line

Additional Resources
• You can download the TFPT tool from MSDN:

http://www.microsoft.com/downloads/details.aspx?FamilyID=7324C3DB-658D-
441B-8522-689C557D0A79&displaylang=en

• To learn more about Team Foundation Power Tool, see “Power Toy: tfptexe”:
http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx

http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx

Administration
• How to add a new developer to your project
• How to remove a developer who has left your project
• How to grant permissions within your source tree

How to Add a New Developer to Your Project
To add a new developer to your project, grant them appropriate access to the team project
and associated SharePoint project site. To enable the developer to view reports, grant the
developer's account access to SQL Server Reporting Services.

To grant access to the team project:

1. Logon to Visual Studio with an account that is a member of the Team Foundation

Administrators application group.
2. Add the required project to Team Explorer (if it is not already listed)
3. Right-click the team project, point to Team Project Settings and click Group

Membership.
4. Select Project\Contributors and click Properties and then add the new developer's

account to this group.

Note that membership of the contributors group provides the typical set of permissions
that a developer requires including the ability to add, modify and delete items within the
team project and perform builds.

To grant access to the Sharepoint project site:

1. Access the team project site with an account that is a member of the SharePoint

Administrator site group. The project site for a project called YourProject is located
by default at http://server/sites/YourProject/default.aspx

2. Click Site Settings.
3. Click Manage Users beneath the Administration title.
4. Click Add Users.
5. Enter the account name in the form domain\useraccount of the new developer's

account, select Contributor and then click Next.
6. Enter the developer's email address, and optionally type a message to welcome them

to the site.
7. Click Finish.

Note that membership of the contributors group provides the typical set of permissions
that a developer requires including the ability to add, modify and delete items within the
team project and perform builds. If you need to restrict access only to specific Visual
Studio solutions or to specific folders in your team project, you can also assign
permissions at the folder or file level.

To grant access to SQL Server Reporting Services

1. Logon to SQL Server Reporting Services administration Web site using an
administrator account. The site is located at http://server/reports.

2. Click your team project name.
3. Click the Properties tab.
4. Click the Security tab.
5. Click New Role Assignment.
6. Enter your developer's Windows account name, select Browser and then click OK.

Note that membership of the Browser group enables the developer to view and subscribe
to reports.

Additional Resources
• For more information, see "Team Foundation Server Default Groups,

Permissions, and Roles" on MSDN at http://msdn2.microsoft.com/en-
us/library/ms253077.aspx

• For more information, see "MSDN: Source Control Security Rights and
Permissions" at http://msdn2.microsoft.com/en-us/library/ms181761.aspx

How to Remove a Developer Who Has Left Your Project
If a developer has left your project, make sure that you delete the developer's workspace.
This operation also removes any of the developer’s pending changes and undoes any
locks held by the developer. Note, you cannot undo the locks without undoing the
changes if exclusive lock is turned on for the team project.

To find out which files the developer has locked out run the following command:

tf workspaces /owner:domain\devuser /computer:*
/server:servername

To delete the workspace, and remove locks, run the following command:

Tf workspace /delete workspacename;domain\devuser
/s:servername

Next, remove the developer's account from the security groups. To do so, make changes
in the following three places:

• TFS Team Project – Logon to Visual Studio with an account that is a member of the

Team Foundation Administrators application group. Using Team Explorer right-click
the project, point to Team Project Settings and click Group Membership. Remove
the developer's account from the relevant groups (normally Contributors)

• SharePoint Team Project Site – Logon to the team site located at
http://server/sites/yourprojectname/default.aspx with an administrator account. Click
Site Settings, Manage Users and then remove the developer account.

• SQL Server Reporting Services - Logon to SQL Server Reporting Services
administration Web site using an administrator account. The site is located at

http://msdn2.microsoft.com/en-us/library/ms253077.aspx
http://msdn2.microsoft.com/en-us/library/ms253077.aspx
http://msdn2.microsoft.com/en-us/library/ms181761.aspx

http://server/reports. Click your team project name, click the Properties tab, and then
click the Security tab. Delete the developer's account.

Additional Resources
• For more information on cleaning up after a developer who has left, see “How to:

Clean Up Files When Users Leave”: http://msdn2.microsoft.com/en-
us/library/ms194958(VS.80).aspx

• For more information on the Workspace command, see “Workspace Command”:
http://msdn2.microsoft.com/en-us/library/y901w7se(VS.80).aspx

• For more information on finding pending changes, see “How do I tell who has
files checked out or locked?”:
http://blogs.vertigosoftware.com/teamsystem/archive/2006/07/24/3125.aspx

How to Grant Permissions within Your Source Tree
You can set permissions on a file or folder within your source tree by right-clicking it in
Source Control Explorer, clicking Properties, clicking the Security tab, selecting the
user or group for which you want to change permissions, and editing the permissions.
You can also set permissions by using the Permission switch with the Tf.exe, command-
line utility for source control.

You can apply source control permissions to specific folders and files but by default
permissions within your source tree are inherited from the permissions applied to the
project folder. If your developers are members of the Project\Contributors application
group, they will be able to read, check out, check in, label and lock source files. If you
need to provide restricted access to a subset of folders or source files within your team
project, for example to enable a developer only to work on certain source files within
your team project, you can set permissions at the folder or file level.

Additional Resources
• For more information, see "Team Foundation Server Default Groups,

Permissions, and Roles" on MSDN at http://msdn2.microsoft.com/en-
us/library/ms253077.aspx

• For more information, see "MSDN: Source Control Security Rights and
Permissions" at http://msdn2.microsoft.com/en-us/library/ms181761.aspx

• For more information about the Tf permission command, see “Permission
Command”: http://msdn2.microsoft.com/en-us/library/0dsd05ft(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms194958(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms194958(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/y901w7se(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms253077.aspx
http://msdn2.microsoft.com/en-us/library/ms253077.aspx
http://msdn2.microsoft.com/en-us/library/ms181761.aspx
http://msdn2.microsoft.com/en-us/library/0dsd05ft(VS.80).aspx

Branch/Label/Merge
• How to use labels
• How to branch
• How to plan your branching structure
• How to use branching to support a release
• How to use branching to maintain a previous release
• How to use branching to stabilize your development and build process
• How to use branching to stabilize feature development
• How to use branching to stabilize development across teams
• How to use branching to isolate external dependencies
• How to retire an old release
• How to perform a merge
• How to perform a baseless merge
• How to resolve merge conflicts

How to Use Labels
Use labels to group a set of files and folders together for future operations. You can use
labels for branching, merging, diffing, or getting files. A label provides a marker to which
you can return when performing one of the above operations at a later date.

To apply a label to a file or folder, right-click it in Source Control Explorer and click
Apply Label. From the Choose Item Version dialog you can modify your choice of file
or folder, choose the version of the file or folder that you would like to label, and then
click OK to apply the label.

When applying labels, consider the following:

• Labels are markers that you can apply to only one version of a file or folder at a
time.

• You can apply multiple labels to a version of a file or folder.
• Labels that you apply by using Source Control Explorer are automatically scoped

to the root folder of the team project within which they are created. You cannot
create two labels with the same name within the same scope.

• Labels are un-versioned objects and there is no history associated with them.
• Labels are applied instantly, and they do not require a check-in
• Team Build automatically assigns a label to the set of files associated with each

build that it creates.
• Labels are not applied to deleted items, this means that merge-by-label will not

pick up deleted files.

To locate an existing label, from the File menu, point to Source Control, Label and click
Find Label. Having found the label you can modify it or delete it from within the Find
Label dialog box.

Additional Resources
• For more information, see “Working with labels”: http://msdn2.microsoft.com/en-

us/library/ms181439(VS.80).aspx
• For more information on labels, see “How to: Apply Labels”:

http://msdn2.microsoft.com/en-us/library/ms181440(VS.80).aspx

How to Branch
To create a branch, either use the Source Control Explorer, or use the Tf branch
command from the command line.

To branch from Source Control Explorer, right-click the top level folder containing
your project source and click Branch. Then specify a target folder location with a folder
name to indicate the purpose of the branch, for example
MyProject_Release1.0_Branch.

To branch from the command line use the Tf branch command from a Visual Studio
2005 Command Prompt. For example:

Tf branch C:\MyProject $/MyProject_Release1.0_Branch

Use branches only when you need to provide isolation while you do parallel
development. Merging has overhead and requires you to manage conflicts, don’t branch
unless you need the file isolation it provides. You can label a build and branch later if
needed.

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to Plan Your Branching Structure
Branches are a mechanism to enable isolation; they are used to allow multiple developers
to work on the same files in isolation. To plan your branching approach, evaluate
common branching patterns and pick a strategy based upon team size, composition, and
build stability requirements.

http://msdn2.microsoft.com/en-us/library/ms181439(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181439(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181440(VS.80).aspx
http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

Common reasons to branch include:
• Release – Branch to stabilize code you want to release. You can branch before

release, avoiding the need to lockdown the main branch.
• Maintenance – Branch to maintain a previously released build.
• Feature – Branch to isolate feature development that might cause instability to

the rest of the project.
• Team – Branch to isolate sub teams so they can work without being subject to

breaking changes or can work towards unique milestones. These are very similar
to feature branches.

Physical Structure
The physical structure is the view you will see in the Source Control Explorer in Visual
Studio. The following example shows the use of features branches to isolate
development, a main branch to integrate changes and produce a scheduled integration
build, a release branch that is being used to stabilize for an upcoming release, and older
maintenance branches that can be used to support previous releases.

• My Project
o Development – Container to isolate active development branches

 Feature A – Branch for isolated development
• Source

 Feature B – Branch for isolated development
• Source

o Main – Main integration and build branch. All changes come together
here.

 Source
 Other Asset Folders

o Release 3 – Branch containing the code currently being locked down to
release

 Source
o Maintenance – Container for maintenance branches

 Release 1 – Active maintenance branch
• Source
• Other Asset Folders

 Release 2 – Active maintenance branch
• Source
• Other Asset Folders

Note: Each branch will have source files and folders under it. In the diagram above, this
is labeled Source – it is the set of source files that were branched out of Main.

Logical Structure
The logical structure consists of the parent/child relationships for each branch. This may
be different from the physical structure you can see in the Source Control Explorer. For
instance, in the physical structure above Release 2 and Main appear to be peers, when
Release 2 is actually a child of Main. See the diagram below for an example of this
logical relationship and how branches and merges flow through the structure.

Integration

Maintenance

Development

Legend

Branch Merge

Release Process
The following diagram shows a typical timeline when branching for a release:

1. Release 1 branch is created off of Main once the release is ready to be locked
down.

2. Periodic merges into Main ensure bug fixes from the release are moved into the
main integration branch

3. The RTM build is labeled in the RTM branch and merged back into Main.
4. A service pack, SP1, is released. The build is labeled and changes are merged into

Main.
5. Release 1 branch lives on in support of SP1 and to enable future service packs.
6. The process repeats for future releases.

Successful use of release branches requires identifying which branch the fix should be
applied to before implementing it. If a fix will be released as a hotfix or service pack, it
best to make the change first on the appropriate RELEASE branch, then merge it into
MAIN to ensure it gets applied to future releases.

Isolated Development Process

The following diagram shows a typical timeline when branching for development
isolation:

1. A feature branch is created to isolate development for Feature A.
2. A feature branch is created to isolate development for Feature B.
3. Each team merges their changes to Main as feature milestones are complete so

that they can be integrated into the main build and picked up by other teams.
4. On a periodic schedule each team merges the latest changes from Main in order

to stay in sync with the work of other teams and reduce the number of conflicts
per merge.

Considerations
When branching, consider the following:

• Structure your branch trees so that you only need to merge along the hierarchy (up
and down the branch tree) rather than across the hierarchy. Branching across the
hierarchy requires that you use a baseless merge which requires more manual
conflict resolution.

• The branch hierarchy is based upon the branch parent and branch child, which
may be different than the physical structure of the source code on disk. When
planning your merges, keep the logical branch structure in mind rather than the
physical structure on disk.

• Do not branch too deeply. Because there is latency in merging branches, a deep
branching structure can mean that changes in a child branch may take a very long
time to propagate to the main branch. This can negatively impact project
schedules and increase the time to fix bugs.

• Branch at a high-level and include configuration and source files.
• Allow your branching structure to evolve over time.
• Do not branch unless your development team needs to work on the same set of

files concurrently. If you are unsure, you can label a build and create a branch
from that at a later point. Merging branches, especially if there are significant
changes between them, can be costly.

• Merging requires one or more developers to execute the merge and sort out
conflicts. The merged source must be thoroughly tested as it is not uncommon to
make bad merge decisions that can destabilize the build.

• Merging across the branch hierarchy is especially difficult and requires you to
manually handle many conflicts that could otherwise be handled automatically.

The decision whether to create a branch can be boiled down to the following:
• Will the cost of merging conflicts in real time be higher or will the overhead cost

of merging conflicts between branches be higher?

Large Project Considerations
Large development teams are likely to distinguish themselves from smaller teams in the
following ways:

• Require a more complex branching and merging structure
• More likely to manage dependencies across solutions and team projects
• More likely to maintain multiple builds for components and teams

Large teams are likely to branch both by team and by feature and are also more likely to
have one or more branches designed to integrate external dependencies. Since the
branching structure is deeper there will be more lag between a change in a development
branch and getting that change into the main integration branch. For this reason it pays to
think through your merging strategy when creating branches.

For example, will your merges be scheduled or event driven?

1. Forward Integration is generally scheduled, for example from the main integration
branch into a development branch.

2. Reverse Integration, such as from a development branch to the main integration
branch, is generally based on event (eg. feature milestone complete). This event is
instigated when the team behind the development branch feels they are ready to
merge changes into their parent branch.

Rationalize your branch/merge strategy with the frequency with which you want to
produce builds. A deeper branching structure will result in more time to merge from
child branches to the main integration branch. Symptoms of this causing a problem for
your development team include:

• Build is broken and the fix takes too long to propagate up to the main integration
branch.

• Milestones are missed because features take too long to propagate up to the main
branch.

• The team is spending large amounts of time merging changes between various
branches.

If this becomes a problem for your team consider reducing the depth of your branching
structure.

The following is an example of a branching structure for a large team:

• My Project
o Development – Container to isolate active development branches

 Team 1

• Feature A –Branch for isolated development
o Source

• Feature B –Branch for isolated development
o Source

 Team 2
• Feature A – Branch for isolated development

o Source
• Feature B – Branch for isolated development

o Source
o Main – Main integration and build branch. All changes come together

here.
 Source
 Other Asset Folders

o Release 4 – Branch containing the code currently being locked down to
release

 Source
o Maintenance – Container for maintenance branches

 Release 2– Active maintenance branch
• Source
• Other Asset Folders

 Release 3 – Active maintenance branch
• Source
• Other Asset Folders

o Safe Keeping
 Release 1 – Old release in safe keeping

• Source
• Other Asset Folders

This structure includes:

• Feature branches for multiple teams to work in isolation.
• A main branch to gather changes by all teams as well as bug fixes from the

release branches
• A release branch used to lockdown the current release
• A maintenance branch for an old release that is being actively maintained and

supported
• Safekeeping branches for older releases that are no longer being maintained

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

 How to Use Branching to Support a Release
Use a Release branch when you are ready to stabilize your build prior to release.

The following is an example of what your branch structure may look like after you have
created a Release branch:

• Main – Integration Branch
o Source
o Other Asset Folders

• Release 1 – Release branch
o Source

Keep the following recommendations in mind when working with a release branch:

• When to branch: When you are ready to release, integrate everything into the
Main branch and then create a release branch that can be used to stabilize the
application prior to release.

• When not to branch: If you are using one TFS project per release, then you can
use the new project to continue development instead of a branch in the current
project.

• Permissions on branch:
• Prior to release – Read/write for all developers.
• After release – Read/write for developers working on hot fixes, read-only for

everyone else.
• Build frequency in branch: On-demand builds.
• Testing focus in branch: Sign off on release.

You should use the Release branch for the targeted fixes and changes necessary in order
to stabilize a build prior to release. Development of the next version of your application
can occur in parallel in your main development or integration branches so they can get
the benefit of the stabilization changes you made prior to release. Once a final release
build has been created, you can merge the changes from the release branch back into your
main development and integration branches

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx
http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to Use Branching to Maintain a Previous Release
Use maintenance branches to support previously released builds.

The following is an example of what your branch structure may look like after you have
moved a release to the maintenance folder:

• Main – Integration Branch
o Source
o Other Asset Folders

• Maintenance – Container for maintenance branches
o Release 1 – Maintenance Branch

 Source
 Other Asset Folders

Keep the following recommendations in mind when working with a maintenance branch:

• When to branch: After you have released, move your release branch into the
maintenance folder. Ongoing maintenance should occur in this branch unless you
are creating a new supportable version. For instance, create another maintenance
branch when working on a service pack that will be released as its own SKU.

• When not to branch: If you will not ever need to maintain the release, you can
use a label to mark the old released build and continue work in the main branch.

• Permissions on branch: Read/write for developers working on hot fixes, read-
only for everyone else.

• Build frequency in branch: On-Demand builds.
• Testing focus in branch: Sign off on release.

You should use maintenance branches to support an older version of your application.
You might choose to merge these changes into your main integration branch, or leave
them specific to the maintenance branch.

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx
http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to use Branching to Stabilize Your Development and Build
Process
Use a Development branch for active development and a Main branch for your
integration build, thus avoiding build breaks.

The following is an example of what your branch structure might look like after you have
created a Development branch:

• Development – Development Branch

o Source
• Main – Integration Branch

o Source
o Other Assets folders

Keep the following recommendations in mind when working with a release branch:

• When to branch: If you are creating daily builds and are having problems with
build stabilization and integration, then create both a main and a development
branch to provide more predictability to your daily build. You may also want to
consider more stringent check-in policies to improve check-in quality.

• When not to branch: If you are only creating continuous integration builds, or
your daily builds are already predictably stable you might not need the extra
overhead of an integration branch

• Permissions on branch:
o The Main branch should be read/write for developers responsible for

merging and integration, but read-only for everyone else.
o The Dev branch should be read/write for everyone.

• Build frequency in branch:
o Daily builds on the Main branch.
o Continuous integration builds on the Dev branch.

• Testing focus on branch:
o Perform integration, performance and security testing on the Main branch.
o Perform feature and quick feedback testing on the Dev branch.

Use the Main branch as a staging ground for integrating changes that have been checked
into the development branch. Perform all active development in the Dev branch, and
integrate non-breaking changes into the Main branch.

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to Use Branching to Stabilize Feature Development
Use feature branches to improve the integration and stabilization of breaking changes
across features.

The following is an example of what your branch structure might look like after you have
created feature branches:

• Development – Container for feature branches
o Feature A – Feature branch

 Source
o Feature B – Feature branch

 Source
o Feature C – Feature branch

 Source
• Main – Integration branch

o Source
o Other Asset Folders

Keep the following recommendations in mind when working with a release branch:

• When to branch: Feature teams often have source file overlap, increasing the
potential for build breaks and check-in conflicts. If you are experiencing these
problems, consider feature branches for each feature to provide feature isolation.
You can create these off a main branch for small teams or off a team branches for
larger teams.

• When not to branch: If you are only creating continuous integration builds, or
your daily builds are already predictably stable you might not need the extra
overhead of feature branches.

• Permissions in branch: Read/write permissions for developers on the feature
branch, read-only for everyone else.

• Build frequency on branch: Continuous integration builds.
• Testing focus in branch: Feature and quick feedback testing.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

Use the feature branch to allow each feature to be developed in parallel. Perform all
active development in the feature branches and then integrate your code into the Main
branch.

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to Use Branching to Stabilize Development Across Teams
Use team branches to improve the integration and stabilization of breaking changes
across teams.

The following is an example of what your branch structure may look like after you have
created team branches:

• Development - Container for team branches
o Team 1 - Team branch

 Source
o Team 2 - Team branch

 Source
• Main – Integration branch

o Source
o Other Asset Folders

Keep the following recommendations in mind when you work with a release branch:

• When to branch: If your development teams overlap on files and components,
use team branches to isolate each team’s work. You might also choose to create
feature branches beneath the team branches.

• When not to branch: If your source tree is organized by component, and you are
confident that there will not be breaking interface changes or a large number of
check-in conflicts across your teams, then you probably do not need team
branches.

• Permissions in branch: Read/write for developers on the team, read-only for
everyone else

• Build frequency on branch: Continuous integration builds
• Testing focus in branch: Feature and quick feedback testing

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

The team branches should be used to allow teams to complete development tasks in
parallel. This can be useful to isolate teams from breaking changes originating on other
teams, or to allow teams to work towards unique milestones. All active development
should occur in the team branches and then integrated into the Main branch. You may
also want to create feature branches beneath each team branch.

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to Use Branching to Isolate External Dependencies
Use an External branch to improve the integration and stabilization of breaking changes
caused by external dependencies.

The following is an example of what your branch structure may look like after you have
created an External branch:

• External – External branch
o Source

• Main – Integration branch
o Source
o Other Asset Folders

Keep the following recommendations in mind when working with a release branch:

• When to branch: When you have external dependencies that may cause breaking
changes in your project. If your dependencies are making interface changes or
substantial logic changes that will impact your code, create an external branch to
isolate these changes.

• When not to branch: When your external dependencies are stable or you are
confident they will not introduce breaking changes.

• Permissions in branch: Read/write for developers responsible for external
dependency integration, read-only for everyone else.

• Build frequency on branch: On-demand builds.
• Testing focus in branch: Integration testing.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

You should use the external branch as an isolated location to test changes in external
dependencies before you integrate them into the Main branch. This can be useful to
isolate the development team from breaking changes caused by external dependencies
such as headers and libraries.

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to Retire an Old Release
When a release branch in your maintenance folder is old enough that you no longer have
to support it, create a Safe Keeping folder in which to store the old release. The
following is an example of what your branch structure may look like after you have
created a Safe Keeping folder:

• Main – Integration Branch
o Source
o Other Asset Folders

• Maintenance – Container for maintenance branches
o Release 2 – Maintenance Branch

 Source
 Other Asset Folders

o Release 2 Service Pack 1 – Maintenance Branch
 Source
 Other Asset Folders

• Safe Keeping - Container for safe keeping branches
o Release 1 - Safe keeping branch

 Source
 Other Asset Folders

The goal of moving the branch from Production to Safe Keeping is to reduce clutter in
the maintenance folder without having to delete old releases. This is not a new branch,
but rather moving an old branch to a new folder.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

Additional Resources
• For additional Branching and Merging guidance, see the Team Foundation Server

Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How to Perform a Merge
Use the merge command to integrate changes from one branch into another. To perform
a merge you can use the merge functionality in Source Control Explorer or you can use
the tf merge command line. You can merge by changeset, label, date, or version. To start
a merge, right click the branch in the Source Control Explorer and click Merge. The
Source Control Merge Wizard allows you to choose the target branch to merge with.

Depending upon your branch structure you might need to merge changes up the branch
hierarchy, down the hierarchy, or across the hierarchy. If you are merging across the
hierarchy you are performing a baseless merge and you must use the Tf merge command
line, because you cannot do this with Visual Studio. A baseless merge allows you to
merge files and folders that do not have a branch/merge relationship. After a baseless
merge, a merge relationship exists and future merges are not baseless. You still need to
execute them from the command line, but the number of merge conflicts will be reduced.

Keep the following in mind when performing merges:

o Merging along the hierarchy, from parent to child or child to parent, results in
fewer conflicts than merging across the hierarchy.

o The branch hierarchy is based upon the branch parent and branch child, which
may be different than the physical structure of the source code on disk. For
example:

o Physical Structure:
 Development – Container for development branches

• Team 1 - Team branch
• Team 2 - Team branch

o Feature A – Feature branch
o Feature B – Feature branch

 Main – Integration branch
 Production – Release branch

• Source
 Maintenance – Container for maintenance branches

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

• Release 2 – Maintenance Branch
o Source
o Other Asset Folders

• Release 2 Service Pack 1 – Maintenance Branch
o Source
o Other Asset Folders

 Safe Keeping - Container for safe keeping branches
• Release 1 - Safe keeping branch
• Other Asset Folders

o Logical Structure:
 Main

• Team 1
• Team 2

o Feature A
o Feature B

• Production
o Release 1
o Release 2

 Release 2 Service Pack 1

Additional Resources
• To get more information on merging, see “Understanding Merging”:

http://msdn2.microsoft.com/en-us/library/ms181427(VS.80).aspx
• For a walkthrough describing how to perform a merge, see “How to: Merge Files

and Folders”: http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

How to Perform a Baseless Merge
To perform a baseless merge use the tf merge /baseless command from the Visual Studio
2005 Command Prompt.

For example, the following command line will perform a baseless merge from the source
branch to the target branch, the /recursive switch is used to do recursive merge of all the
files and folders within the specified branch path

tf merge /baseless <<source path>> <<target path>> /recursive

Example

Tf merge /baseless c:\data\proj1 c:\data proj2 /recursive

The process of merging items that are not directly branched from each other is called a
baseless merge. For example, you may want to merge a change between two release
branches, which are siblings of each other, without merging up to the parent branch.
Baseless merge only works from the command line; you cannot perform a baseless merge
from Visual Studio.

http://msdn2.microsoft.com/en-us/library/ms181427(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

When you perform a baseless merge Team Foundation Server does not have any
information about the relationship of the files in the branches. For instance, a file rename
will be viewed as a deleted file and a new file in the branch. For this reason you will have
to perform more manual conflict resolution than when you perform a normal merge.
However, you only have to perform this conflict resolution one time. After you have
performed the baseless merge, Team Foundation Server records history and establishes a
relationship between the folders/files.

Baseless merges can only be created from the command line. Even after the first baseless
merge, when a relationship has been created between the branches, future merges still
need to be created from the command line.

Additional Resources
• For merge command syntax, see “Merge Command”:

http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
• To get more information on merging, see “Understanding Merging”:

http://msdn2.microsoft.com/en-us/library/ms181427(VS.80).aspx
• For a walkthrough describing how to perform a merge, see “How to: Merge Files

and Folders”: http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

How to Resolve Merge Conflicts
To resolve merge conflicts use the Visual Studio merge tool. If a conflict is detected
during a merge you can resolve conflicts automatically or resolve them manually. If you
choose to resolve the conflict manually you can keep the source changes, keep the target
changes, or resolve the conflict in the merge tool.

You may need to resolve conflicts when merging changes between branches, getting files
into your workspace, or checking in new versions of files. There are three conflict types:

• Version. The file has evolved along divergent paths. This could be the result of a
file edit, rename, delete, or undelete.

• File Name Collision. Two or more items are trying to occupy the same path.
• Local Overwrite. Only occurs during a get operation, if you are trying to

overwrite a local, editable file.

Most conflicts can be resolved automatically, version conflicts are the only conflict type
that may result in a manual merge operation. Manual merge is most common in the
following scenarios:

• A file has been edited in both branches with changes to the same lines of code.
• A baseless merge is being conducted in which the branch file relationships are not

known to Team Foundation Server.

The merge tool shows you the details for each conflict and allows you to choose which
change you want to keep in the final merged file. You can choose to keep the source

http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181427(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

change, the destination change, integrate both changes, or you can manually modify the
final version by typing directly into the file.

When you have resolved every conflict in the file, save the final version as a pending-
change to be checked into the target branch.

Be careful when merging, it is easy to make mistakes that may result in build instability.
Once you are done merging, compile the resulting source and run unit tests to test for
major breaks.

Additional Resources
• For more information on how to resolve conflicts, see “How to: Resolve

Conflicts”: http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx

Builds
• How to use TFS to perform continuous integration builds

How to Use TFS to Perform Continuous Integration Builds
To perform continuous integration and rebuild your project every time a file is checked
in, you need to use a Web service to trigger the build process. You subscribe the Web
service to check-in events so that the build is triggered each time someone checks in a
file. To trigger the build you also need to use an appropriate build type that determines
what configuration is built, what post build steps and test are executed, what drop
location is used and so on.

Additional Resources
• A web service to trigger the build process is available from Microsoft at the

following download location:
http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-
0e81d3de2482/ci.msi.

Check-In and Check-in Policies
• How to work with source control change sets
• How to enforce coding standards prior to check-in
• How to override a check-in policy
• How to undo a check-in
• How to resolve a conflict
• How to avoid conflicts
• How to create a custom check-in policy

How to Work with Source Control Change Sets
A changeset groups together a set of changes associated with a given check-in. The
common operations you need to perform on changesets are:

http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx
http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-0e81d3de2482/ci.msi
http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-0e81d3de2482/ci.msi

• Checking in a changeset associated with a work item
• Labeling a changeset
• Viewing details about a changeset.
• Changing details about a changset.
• Rolling back a changeset

To check in a changeset associated with a work item:

1. From the Visual Studio View menu, point to Other Windows and click Pending
Changes.

2. Enter a suitable comment to reflect the nature of the changes.
3. Click the Work Items icon to display the list of associated work items.
4. Update the associated work items by selecting them and then specifying the check

in action Associate or Resolve (if the check-in means that the work item is
resolved).

5. Click Check In to check in the changeset to the source control server.

To label a change set:

1. Right-click your Team Project folder in the Source Control explorer in Visual
Studio and click Apply Label.

2. Select Changeset from the Version drop down list, enter a Changeset number
and click OK.

3. In the Apply Label dialog box enter a label name and comment and then click
OK.

To view changeset details:

• Use the Tf changeset command. The following command displays details about
changeset number 1234 by displaying the Details for Changeset dialog box.

Tf changeset 1234

From the dialog box you can view the source files contained in the changeset,
view the check in comments and notes, view associated work items and view any
policy warnings that were generated when the change set was checked in to the
server.

To change details about a changset:

• Use the Tf changeset command. You can alter the comments and/or notes
associated with the changeset.

• The following command displays the Details for Changeset dialog box for
changset 1234 and updates the displayed comment field allowing you to change
the comment.
Tf changeset /comment:"This is a much better comment than the last one."

1234
• The following command updates the code reviewer and security reviewer notes

associated with changeset 1234.

Tf changeset /notes:"Code Reviewer"="C Davis";"Security Reviewer"="F
Smith" 1234

To rollback a changeset and remove the changes from the source control server use the
Team Foundation Power Tool:

• Use the TFPT rollback command. The following command rolls back change set
number 1234.
Tfpt rollback /changeset:1234
This command causes the Roll Back Changeset window to display. You can
select the files contained within the changeset to roll back.

Additional Resources
• For more information about the Tf changeset command, see “Changeset

Command”: http://msdn2.microsoft.com/en-us/library/w51xa47k(VS.80).aspx
• For more information on retrieving changesets, see “How to: Retrieve Old

Versions of Files from Changesets”: http://msdn2.microsoft.com/en-
us/library/ms181416(VS.80).aspx

• You can download the Team Foundation Power Tool (TFPT) from MSDN:
http://www.microsoft.com/downloads/details.aspx?FamilyID=7324C3DB-658D-
441B-8522-689C557D0A79&displaylang=en

• To learn more about Team Foundation Power Tool, see “Power Toy: tfptexe”:
http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx

How to Enforce Coding Standards Prior to Check-in
Use Team Foundation Server check-in policies to ensure that all code checked into the
server meets your required coding standards.

The following check-in policies are available by default:

• Code Analysis. Requires that code analysis be run before check-in.
• Test Policy. Requires that check-in tests be completed before check-in.
• Work Items. Requires that one or more work items be associated with the check-

in.

The default code analysis check-in policy provides checks for both managed and
unmanaged code. Managed code analysis uses the FxCop engine to statically analyze
your code to ensure that it conforms to standard .NET design rules, globalization rules,
interoperability rules, naming rules, performance rules, security rules and more. If you
need to extend the code analysis you must develop your own FxCop rules.

To configure the code analysis check-in policy:

1. From Team Explorer, right-click your team project, point to Team Project
Settings, and then click Source Control.

2. Click Check-in Policy and then click Add.
3. In the Check-in policy list, select Code Analysis and then click OK.

http://msdn2.microsoft.com/en-us/library/w51xa47k(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181416(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181416(VS.80).aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=7324C3DB-658D-441B-8522-689C557D0A79&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=7324C3DB-658D-441B-8522-689C557D0A79&displaylang=en
http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx

4. Specify the type of code analysis that you want performed by selecting the
appropriate check boxes. If you select Enforce Code Analysis For Managed
Code, select the required rules in the Rule settings for Managed Code Analysis
list.

5. Click OK and then OK again.

Important: While the above procedure ensures that the configured policy is executed
whenever a developer checks in a source file, developers can always override policy at
check-in time. If you want to monitor this in order to manage this scenario, you can hook
the policy override event.

You can create your own custom check-in policies which will enforce your project
specific quality gates for example you want to enforce that user adds comments, runs
additional acceptance tests, certain pragma directives in C# are not used to suppress XML
documentation warnings or the projects are configured to generate XML documentation
during compilation.

To create custom policy plug-ins that appear in the Add Checkin Policy dialog box use
the extensibility features provided in the Visual Studio Team Foundation Server SDK.

Additional Resources
• To learn how to customize a check-in policy, see “Walkthrough: Customizing Check-

in Policies and Notes”, http://msdn2.microsoft.com/en-
us/library/ms181281(VS.80).aspx

• To see sample code that will disallow selected patterns on checkin, see Checkin
Policy to Disallow Certain Patterns:
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx

• To see sample code that will enforce comments on checkin, see Sample Checkin
Policy: Make Sure the Comment Isn't Empty:
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx

• To learn how to register a new checkin policy, see I've Made a New Check-In Policy!
How Do I Add It?: http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

• For more information about how to use code analysis tools, see “Guidelines for Using
Code Analysis Tools”: http://msdn2.microsoft.com/en-
us/library/ms182023(VS.80).aspx.

• You can download the Visual Studio Team Foundation Server SDK from:
http://go.microsoft.com/fwlink/?linkid=68586

How to Override a Check-in Policy
To override a check-in policy, check the Override policy failure and continue check-in
checkbox in the Policy Failure dialog box. Anyone with permission to check in files can
override a check-in policy.

If you would like to detect when a member of your team overrides check-in policy you
can use the Team Foundation Eventing Service to hook check-in events.

http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx
http://msdn2.microsoft.com/en-us/library/ms182023(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms182023(VS.80).aspx
http://go.microsoft.com/fwlink/?linkid=68586

Additional Resources
• To learn more about overriding a check-in policy, see “How to: Override a

Check-in Policy”: http://msdn2.microsoft.com/en-
us/library/ms245460(VS.80).aspx

• To learn more about the Team Foundation Eventing Service, see “Eventing
Service”: http://msdn2.microsoft.com/en-us/library/bb130154(vs.80).aspx

• To learn how to use the TFS Object Model to detect a policy override, instead of
eventing, see James Manning’s blog post on MSDN:
http://blogs.msdn.com/jmanning/archive/2005/11/04/489193.aspx

How to Undo a Check-in
To undo the check-in of a file, use the Team Foundation Power Tools (TFPT) rollback
command to revert the file to the previous version. The rollback command enables you
to rollback an entire changeset at a time, but you can also select individual files from
within the changeset to rollback. This is useful if you need to undo a change to a file that
was mistakenly checked in or where you want to undo the check-in because the changes
are causing serious integration build issues.

To undo a check-in of a file and revert to the previous version:

1. Run the following command from a command window that includes the “\program

files\microsoft team foundation server power tools” folder in the path.
Tfpt rollback filename.cs
Note: If you know the changeset number of the changeset containing the check-in you
want to undo, you can supply the changeset number on the command line as follows:
Tfpt rollback filename.cs /changeset:54

2. The rollback command needs to ensure your local workspace is up to date. Click
Yes in response to the Roll Back Changeset message box. Your workspace is
updated at this point with files from the server.

3. If you did not specify a changeset number on the command line, the Find Changset
dialog box is displayed. Enter search criteria or just click Find and then locate and
select the changeset that contains the check-in you want to undo and then click Roll
Back.

4. The Roll Back Changeset dialog box is displayed .The changeset might contain
multiple check-ins so select the file for which you want to undo the check-in and then
click Roll Back. Note that if you specified the filename on the command line then
only this file in the changeset will be selected.

When undoing check-ins with the TFPT rollback command, you should be aware of the
following:
• Workspace location. TFPT finds locates workspaces as follows. If you specify a file

path as an argument to filter the rollback, the file paths are used to find the
workspace. If you do not specify file paths, the local directory is used to identify the
workspace, if the local directory is mapped. The simplest approach to ensure that the
tool locates the right workspace is to run the command from a locally mapped
directory.

http://msdn2.microsoft.com/en-us/library/ms245460(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms245460(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb130154(vs.80).aspx
http://blogs.msdn.com/jmanning/archive/2005/11/04/489193.aspx

• Pending changes. You cannot rollback a changeset that contains pending changes
and if you attempt to do so the tool reports an error. In this instance you must move
pending changes to a shelveset, undo or check-in all pending changes before running
the rollback command.

• Merge scenarios. If you are undoing the check-in of a file that has very recently been
checked in you are unlikely to need to merge changes because it is unlikely that
anyone else will have updated the item in the intervening period. However, if you
want to undo a check-in and the check-in to undo is not the latest change to a file,
then a three way merge is required. The current version on the server, the version you
have in your workspace and the version you want to roll back to must be merged
together. If there are no conflicts, then the changes from the version to rollback are
extracted from the file, and any changes that came after that version are preserved.

• Resolving conflicts. If you do need to perform a merge, the merge window is
displayed. To resolve the merge, select the item and click Merge. An automatic
merge is initially attempted, and if it fails, the merge tool is invoked to resolve the
merge. The Auto-Merge All button attempts an automatically merge each of the
items in the merge list, but does not attempt to invoke the merge tool.

Additional Resources
• You can download the TFPT tool from MSDN:

http://www.microsoft.com/downloads/details.aspx?FamilyID=7324C3DB-658D-
441B-8522-689C557D0A79&displaylang=en

• To learn more about Team Foundation Power Tool, see “Power Toy: tfptexe”:
http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx

How to Resolve a Conflict
To resolve merge conflicts use the Visual Studio merge tool. If a conflict is detected
during a merge you can resolve conflicts automatically or resolve them manually. If you
choose to resolve the conflict manually you can keep the source changes, keep the target
changes, or resolve the conflict in the merge tool.

You may need to resolve conflicts when merging changes between branches, getting files
into your workspace, or checking in new versions of files. There are three conflict types:

• Version. The file has evolved along divergent paths. This could be the result of a
file edit, rename, delete, or undelete.

• File Name Collision. Two or more items are trying to occupy the same path.
• Local Overwrite. Only occurs during a get operation, if you are trying to

overwrite a local, editable file.

Most conflicts can be resolved automatically, version conflicts are the only conflict type
that may result in a manual merge operation. Manual merge is most common in the
following scenarios:

• A file has been edited in both branches with changes to the same lines of code.
• A baseless merge is being conducted in which the branch file relationships are not

known to Team Foundation Server.

http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx

The merge tool shows you the details for each conflict and allows you to choose which
change you want to keep in the final merged file. You can choose to keep the source
change, the destination change, integrate both changes, or you can manually modify the
final version by typing directly into the file.

When you have resolved every conflict in the file save the final version as a pending
change to be checked into the target branch.

Be careful when merging, it is easy to make mistakes that may result in build instability.
Once you are done merging, compile the resulting source and run unit tests to test for
major breaks.

Additional Resources
• For Additional Resources on resolving conflicts, see How to: Resolve Conflicts:

http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx

How to Avoid Conflicts
To help avoid conflicts:
• Ensure effective team communication. When you work on a source file, let other

team members know you are working on the file and which aspects you will be
updating. While automatic conflict resolution can resolve many conflicts, you should
avoid situations where two or more developers are working on the same functional
areas in the same source file where there is a strong likelihood of you both making
changes to the same lines of code. Conflicts on the same lines of code require manual
conflict resolution, which complicates the merge operation.

• Check who else has a file checked out. Before updating a file, check to see if
another team member already has the file checked out. If so, ask your colleague what
he or she is working on and then decide if you can wait until they complete their
changes or if it is safe to continue to work in parallel on the same file because you are
working on separate functionality in separate source code regions within the file.

To see pending changes use the following steps:

• From within the Source Control Explorer right click on the solution, project,
folder, or file for which you want to see pending changes

• Select View Pending Changes

This method shows you all of the pending changes within the scope you’ve selected.
You may also use the command line checkout tool to learn about pending changes:

Tf status /format:detailed /user:*

This command displayed detailed status information about any pending changes made by
all users. From the resulting list, you can see who has which files checked out with
pending changes. To check the pending changes for a specific file, specify the filename
as the first argument to Tf.exe.

http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx

Additional Resources
• For more information on viewing pending changes in your workspace, see “How

to: View and Manage All Pending Changes in Your Workspace”:
http://msdn2.microsoft.com/en-us/library/ms181400(VS.80).aspx

• For more information on viewing pending changes in other workspaces, see “How
to: View Pending Changes in Other Workspaces”:
http://msdn2.microsoft.com/en-us/library/ms181401(VS.80).aspx

• For more information about the Tf status command see “Status Command”:
http://msdn2.microsoft.com/en-us/library/9s5ae285(VS.80).aspx

How to Create a Custom Check-in Policy
To create a custom check-in policy use the plug-in model exposed by the policy
framework.

You can create a custom check-in policy to implement your own policy logic. For
example if you want to check if users have been adding comments or using regular
expressions correctly at the time of check-in.

Plug-ins are used both within the policy definition process as well as during the policy
evaluation process. Policy plug-ins are installed either by themselves or as part of a
separate application and are registered with the policy framework so that they can be
loaded as needed.

A policy plug-in must expose the following interfaces:

• IPolicyDefinition The IPolicyDefinition interface exposes methods that are
used in the process of defining policy requirements for a team project. It includes
methods for invoking user interface specific to the policy plug-in to allow users to
easily define a check-in policy.

• IPolicyEvaluation The IPolicyEvaluation interface exposes methods that are
used in the process of evaluating policy compliance during the check-in process.
It includes methods that accept the contents of a check-in operation and analyze
them to establish whether the defined policy is satisfied.

You can package multiple policy plug-ins n the same assembly. The only requirement is
that you implement the plug-ins as separate classes.

Note: These interfaces are exposed in PolicyBase. As an alternative to implementing
IPolicyDefinition and IPolicyEvaluation, you can derive a class from PolicyBase.

Additional Resources
• To learn how to customize a check-in policy, see “Walkthrough: Customizing

Check-in Policies and Notes”, http://msdn2.microsoft.com/en-
us/library/ms181281(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181400(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181401(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/9s5ae285(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx

• To see sample code that will disallow selected patterns on checkin, see Checkin
Policy to Disallow Certain Patterns:
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx

• To see sample code that will enforce comments on checkin, see Sample Checkin
Policy: Make Sure the Comment Isn't Empty:
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx

• To learn how to register a new checkin policy, see I've Made a New Check-In
Policy! How Do I Add It?:
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

• For more information about how to use code analysis tools, see “Guidelines for
Using Code Analysis Tools”: http://msdn2.microsoft.com/en-
us/library/ms182023(VS.80).aspx.

• You can download the Visual Studio Team Foundation Server SDK from:
http://go.microsoft.com/fwlink/?linkid=68586

• For more information on creating a new policy, see “Policy Plug-ins”:
http://msdn2.microsoft.com/en-us/library/bb130343(VS.80).aspx

http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx
http://msdn2.microsoft.com/en-us/library/ms182023(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms182023(VS.80).aspx
http://go.microsoft.com/fwlink/?linkid=68586
http://msdn2.microsoft.com/en-us/library/bb130343(VS.80).aspx

Checkout, Get and Lock
• How to synchronize your computer with TFS
• How to prepare a file for editing

How to Synchronize Your Computer with TFS
To synchronize your computer with the version control server, use the Tf get command.
This is a quick way of ensuring that your computer is synchronized with the rest of your
team to ensure you have the latest copy of shared work. To download all files and not just
those that are out of date, run the following command from a Visual Studio 2005
command prompt window.

Tf get /all

With this command any local writable files that you might have on your computer are not
overwritten. If you want to overwrite local writable files to completely synchronize your
computer with the server use the /force switch as shown here.

Tf get /force

While this command overwrites local writable files, it does not overwrite writable files
for which you also have pending edits. If you have pending edits on a file that you need
to keep, check in or shelve your edits prior to re-synchronizing with the server. To
perform the same operation from Visual Studio, double-click the Source Control folder
in the Team Explorer window, right-click your server or team project and click Get
Specific Version. Select Overwrite writable files that are not checked out and Force
get of file versions already in workspace, ensure that Latest Version is selected in the
Type drop-down list and then click Get.

If you want to completely synchronize your computer with the version control server, do
not use the Get Latest Version option available in Visual Studio, because this command
only downloads those files not already in your workspace and does not overwrite writable
files that you have checked out in your local directory, so your computer remains out of
synchronization with the server.

Additional Resources
• For more information on the get command, see “Get Command”:

http://msdn2.microsoft.com/pt-br/library/fx7sdeyf(VS.80).aspx

How to Prepare a File for Editing
To prepare a file for editing:

1. From Source Control Explorer, select the file, right-click and click Get Latest
Version. This downloads a read-only copy of the latest version of the file into the
workspace on your computer.

2. Right-click the file and click Check Out for Edit.

http://msdn2.microsoft.com/pt-br/library/fx7sdeyf(VS.80).aspx

3. Choose your required lock type. Select None to allow other users to check the file
in and out during the period of time you are working on the file. This type of
shared check out is generally recommended because most conflicts should they
arise can be resolved automatically.

Note that the get latest version operation does not check out the file and the check out for
edit operation does not do a get. You need to perform both steps individually. This
behavior is different from VSS behavior.

When selecting your lock type, consider the following:

• A shared checkout (None) avoids introducing potential bottlenecks into your
development process by preventing someone else working in the same file.

• You should only lock a file while editing it if you are concerned that there will be
a conflict resulting in a complicated manual merge operation.

• Select the Check Out lock type to prevent other users from checking out and
checking in the file. This option prevents other people from editing the file which
could represent a potential bottleneck to your development process. This option
ensures that you can apply your changes back to the source control database
without the possibility of other changes having been made to the file by other
people.

• Select the Check In lock type to allow other users to check out the file but
prevent them from checking it in. Again, this option ensures that you will be able
to check-in your edits without conflicts.

Additional Resources
• For more information on the checkout command, see “Checkout and Edit

Commands”: http://msdn2.microsoft.com/pt-br/library/1yft8zkw(VS.80).aspx

http://msdn2.microsoft.com/pt-br/library/1yft8zkw(VS.80).aspx

Code Sharing
• How to share code
• How to manage shared binaries

How to Share Code
If you have source code that is used by multiple team projects, you can either manage the
source code within the team project of the owning team or create a team project
specifically for the shared source code.

For the teams consuming the shared source code, there are following two options:

1. Reference the code from shared location
2. Branch the Shared code

1. Reference the code from shared location
In this case the projects consuming the shared code can merely map the source from the
shared location into their workspaces on the client machine. This creates a configuration
that unifies the source from the shared location and their project on the client-side.

The advantage of this approach is that shared source changes are picked up every time
the latest source is retrieved into the workspace.

For example you have 2 team projects Client and Shared Code, and Shared Code is the
shared source, for referencing the code from shared location, these projects will share a
common path on the client’s hard drive

• c:\TestProject\Client
• c:\TestProject\Shared Code

They will have workspace mappings to those local hard drive paths:

Source Control Folder Local Folder
$/Client c:\TestProject\Client
$/Shared Code c:\TestProject\Shared Code

For more information see “Working with multiple team projects in Team Build” at
http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

2. Branch the shared code
In this case the projects consuming the shared code can branch the source from the shared
location into their team project. This creates a configuration that unifies the source from
the shared location and their project on the server-side.

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

The difference is that the shared source changes are picked up as part of a merge process
between the branches. This makes the decision to pick up changes in the shared source
much more explicit.

For example you have 2 team projects Client and Shared Code, and Shared Code is the
shared source, for branching the code from shared location.
• In the Source Control Explorer, right click on the root folder of Shared Code
• Select the Branch… option.
• In the Branch dialog box, set the Target: to the root folder of the Client team project

and click Ok.
• Once the branch operation is completed don’t forget to check-in the branched source

code.

Additional Resources
• For more information see “Working with multiple team projects in Team Build” at

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
• For more information on project references, see “Project References”:

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

How to Manage Shared Binaries
Managing shared binaries is similar to managing shared source, you must decide where
you want to store the binaries and how you want your team to access the binaries.

Options for storing the binaries:

• If the shared binaries are clearly owned by a particular team, store it in their team
project.

• If the shared binaries have no clear ownership, then create a team project
specifically for the shared binaries.

Options for using the binaries in another project

• Usually shared binaries are updated only periodically. If this is the case, branch
from the shared location into the consuming team project. When the binaries
change, you can execute a merge to get the latest version.

• If you need to stay in sync with the shared binaries at all times, map the source
from the shared location into a local workspace on client machines.

To branch shared binaries into your project:
• In the Source Control Explorer, right click on the root folder of Shared Binaries
• Select the Branch… option.
• In the Branch dialog box, set the Target: to the root folder of the Client team project

and click Ok.
• Once the branch operation is completed don’t forget to check-in the branched source

code.

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

Whether you use workspace mapping or branching, use naming conventions that make it
clear where the shared binary location is in your project, for instance:

• Main
o Source – Contains code for this project
o Lib – Contains shared binaries

Additional Resources
• For more information see “Working with multiple team projects in Team Build” at

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx
• For an introduction to branching and merging, see “Branching and Merging Primer”:

http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
• For more information on project references, see “Project References”:

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

Distributed/Remote Development
• How to access TFS over the Internet
• How to support a remote office

How to Access TFS over the Internet
If you are supporting an office with multiple clients connecting to a remote Team
Foundation Server, install and configure Team Foundation Server Proxy in the Remote
Office. This improves performance by caching source control files on the remote office’s
proxy server.

If you are supporting a single client connecting to a remote Team Foundation Server over
a local area network, configure the client to connect directly to the Team Foundation
Server. However, if as client computers are added, server performance begins to degrade
consider installing Team Foundation Server Proxy to help reduce the workload on the
server.

Additional Resources
• To learn more about the Team Foundation Server Proxy, see “Team Foundation

Server Proxy and Source Control”: http://msdn2.microsoft.com/en-
us/library/ms252490(VS.80).aspx

• For more information about examining TFS proxy performance, see:
http://msdn2.microsoft.com/en-us/library/ms252455(VS.80).aspx

How to Support a Remote Office
Client and server communication in TFS uses HTTP and HTTPS. To support Internet
access, publish your TFS application tier in your extranet and install your TFS database
on a separate server also in the extranet (dual server deployment). Configure your TFS
server for HTTPS access by using a server-side certificate.

At your remote location, install and configure Team Foundation Server Proxy. This
improves performance by caching source control files in the remote office’s proxy. To
configure and optimizing proxy performance:
• Make sure caching is enabled and monitor the performance of your cache. Monitor

the performance counters (installed by default) and event logs (for errors/warnings)
on your proxy server on a periodic basis, to see how your proxy is performing. Note
that TFS proxy saves cache performance statistics to an XML file called
ProxyStatistics.xml and you can change the interval for saving these statistics. The
ProxyStatistics.xml file is located in the App_Data folder in the proxy installation
directory.

• Run a scheduled task to retrieve the latest files on a periodic basis to the proxy server.
This helps to ensure that the latest version of the files are available in the proxy cache
and to ensure that subsequent client requests for these files result in a cache hit.

http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx

• If you know that large files are going to be downloaded over a low bandwidth (<
3Mbps) network, then set the executionTimeout configuration to an appropriate
value in Web.config. The default value is one hour <httpRuntime
executionTimeout="3600"/>.

Additional Resources
• To learn more about the Team Foundation Server Proxy, see “Team Foundation

Server Proxy and Source Control”: http://msdn2.microsoft.com/en-
us/library/ms252490(VS.80).aspx

• For more information about examining TFS proxy performance, see:
http://msdn2.microsoft.com/en-us/library/ms252455(VS.80).aspx

• To learn more about the TFS Proxy File Cache Server, see the MSDN Webcast:
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-
US&EventID=1032291120&CountryCode=US

Migration
• How to migrate your source from Visual SourceSafe
• How to migrate your source from other version control systems
• How to move Team Foundation Version Control to another server

How to Migrate Your Source from Visual SourceSafe
To migrate your source from VSS, perform the following process. Note that to perform
these steps, you must be a member of the Team Foundation Administrators group.
Step 1: Prepare VSS
Prepare to migrate by backing up your VSS database, ensuring that files are checked in
and running the Visual SourceSafe Analyze tool to identify and resolve data integrity
issues in your existing database.
Step 2: Analyze your projects
Use the converter command-line tool (VSSConverter.exe) passing the analyze command
switch together with the name of a settings XML file.

VSSConverter analyze conversionsettings.xml

A sample XML settings file is shown here:
 <?xml version="1.0" encoding="utf-8"?>
 <SourceControlConverter>
 <ConverterSpecificSetting>
 <Source name="VSS">
 <VSSDatabase name="c:\VSSDatabase"></VSSDatabase>
 </Source>
 <ProjectMap>
 <Project Source="$/MyFirstProject"></Project>
 <Project Source="$/MySecondProject"></Project>
 </ProjectMap>

http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252455(VS.80).aspx
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-US&EventID=1032291120&CountryCode=US
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-US&EventID=1032291120&CountryCode=US

 </ConverterSpecificSetting>
 </SourceControlConverter>

The settings file contains the name of the VSSDatabase. You set the name attribute to
point to the folder that contains your source safe ini file. The Project elements define the
path to the projects you want to convert within your source safe database. To migrate an
entire VSS database, use <Project Source="$/"></Project>.

The VssConverter.exe analyze command also generates a usermap.xml file. By adding
mappings to this file you can change the names associated with version history etc from
VSS login names to your TSF Windows login names.

Step 3: Migrate your projects
Choose the folders you want to migrate and then use VSSConverter.exe with the migrate
argument.

VSSConverter migrate conversionsettings.xml

You again pass the configuration settings XML file but with two important additions as
shown here:

 <?xml version="1.0" encoding="utf-8"?>
 <SourceControlConverter>
 <ConverterSpecificSetting>
 <Source name="VSS">
 <VSSDatabase name="c:\VSSDatabase"></VSSDatabase>
 </Source>
 <ProjectMap>
 <Project Source="$/MyFirstProject"
Destination="$/MyTeam_ProjectOne"></Project>
 <Project Source="$/MySecondProject"
Destination="$/MyTeam_ProjectTwo"></Project>
 </ProjectMap>
 </ConverterSpecificSetting>
 <Settings>
 <TeamFoundationServer name="YourTFSServerName" port="PortNumber"
protocol="http"></TeamFoundationServer>
 </Settings>
 </SourceControlConverter>

Note the addition of the Destination attribute on the <Project> elements. This points to
your team project in TFS (which you must have previously created). Also note the
addition of the <Settings> element that contains connection details for your TFS
application tier.

Additional Resources
• For more information on how to prepare for migration, see:

http://msdn2.microsoft.com/en-us/library/ms181246(en-us,vs.80).aspx
• For more information on how to perform the migration, see:

http://msdn2.microsoft.com/en-us/library/ms181247(VS.80).aspx
• For more information on the limitations of the Visual SourceSafe converter, see:

http://msdn2.microsoft.com/en-us/library/ms252491(VS.80).aspx

How to Migrate Your Source from other Version Control Systems
You can manually export files from the version control system you're migrating from and
then import them into Team Foundation Server Version Control. If you would like to
preserve file history or other attributes from the version control system you're migrating
from, you can use the Team Foundation Server Version Control object model to write
your own migration tool.

Microsoft is currently working on a ClearCase converter, when it is ready it will be
announced on the TFS Migration blog: http://blogs.msdn.com/tfs_migration

Component software has created a converter that is compatible with GNU RCS, CS-RCS,
GNU CVS, Subversion (SVN) and Visual SourceSafe (VSS)

Additional Resources
• You can download the Visual Studio Team Foundation Server SDK from

http://go.microsoft.com/fwlink/?linkid=68586
• To learn more about Team Foundation Version Control extensibility, see

“Walkthru:The Version Control Object Model”: http://msdn2.microsoft.com/en-
us/library/bb187335(VS.80).aspx

• For more information on the component software converter, see:
http://www.componentsoftware.com/
Products/Converter/

How to move Team Foundation Version Control to another
server
Team Foundation Server does not support copying a server from one location to another,
nor does it support mirroring. You can backup and restore a complete server, you can
move your existing server hardware to a new domain, or you can upgrade to a dual-server
deployment. You cannot perform partial moves, eg. moving some projects from your
server but keeping others.

There are three supported move types for Team Foundation Server:

• Backup Restore. Use this move type when you need to move your Team
Foundation Server to a new machine. For specific steps, see How to: Move Your
Team Foundation Server from One Hardware Configuration to Another.

http://msdn2.microsoft.com/en-us/library/ms181246(en-us,vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181247(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252491(VS.80).aspx
http://go.microsoft.com/fwlink/?linkid=68586
http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx
http://www.componentsoftware.com/%0bProducts/Converter/
http://www.componentsoftware.com/%0bProducts/Converter/
http://msdn2.microsoft.com/en-us/library/ms404869(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms404869(VS.80).aspx

• Environment. Use this type of move when you need to move your Team
Foundation Server to a new domain or workgroup. For specific steps, see How to:
Move Your Team Foundation Server from One Environment to Another.

• Single Server to Dual Server. Use this type of move when you need to move
from a single server deployment to a dual server deployment. For specific steps,
see How to: Move from a Single-Server to a Dual-Server Deployment.

Keep the following considerations in mind when moving a Team Foundation Server:

• Changing the Team Foundation application-tier server name requires that all
Team Foundation clients must connect to a new server name.

• All query-bound Microsoft Office documents will no longer work if the server
name is changed. The documents are bound to the server for which they were
created. This includes all the query bound Microsoft Office documents that are
created automatically at project creation time in the project Documents node.

• Any embedded links to documents will point to an unknown server name if the
server name is changed.

• Local accounts existed on the original Team Foundation Server. You must decide
whether these accounts will be recreated as local accounts on the moved Team
Foundation Server, or as domain accounts in the moved Team Foundation
Server's new domain.

• Domain accounts existed on the original Team Foundation Server, but you are
moving Team Foundation Server to a domain that does not trust the original
domain. You must decide whether these accounts will be re-created as local
accounts on the moved Team Foundation Server, or as domain accounts in the
moved Team Foundation Server's new domain.

Test your server after the move to ensure nothing major was broken in the transition.
Testing should check the following areas:

• Were all the assets move correctly? Look at your source tree, work items, and
team pages to be sure they are all in place.

• Are the user accounts still operative? Try logging in with a few different account
types to make sure they still work.

Additional Resources
• For more information on moving Team Foundation Server, see:

http://msdn2.microsoft.com/en-us/library/ms404879(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms404883(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms404883(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms404854(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms404879(VS.80).aspx

Project/Workspace Management
• How to choose one team project vs multiple team projects
• How to organize your source tree
• How to define workspace mappings
• How to use workspaces to isolate code changes on your computer

How to Choose one Team Project vs Multiple Team Projects
To plan your project structure, evaluate common project organization strategies and
choose the one that best fits your organization’s size, server constraints, and process
workflow. Projects are intended to represent the largest unit of work possible in your
organization. You should preferably choose single project versus creating multiple
projects. Use multiple projects when there is strong reason for doing so, for example the
team changes, or there is significant change from one release to another and you don’t
wish to carry the unwanted work items bugs etc going forward, or there is change in the
process template, etc.

The main advantages of creating single project versus multiple projects are that it
simplifies moving requirements, features, scenarios, and bugs between releases

The most important decision points are:

1. Do you want to maintain work items, and other assets from release to release? If
so, choose to keep all releases in the same project.

2. Do you want to create a new process and work item structure from scratch when
you move to a new release? If so, choose to create a new project for each release.

Common project structures include:

• One project per application. Use a single project to contain all versions of your
application. Create a branch per release within that project.

o Reasons to use this structure:
 Makes it easy to carry forward code, work items and other assets.

o Reasons not to use this structure:
 Releases in parallel are forced to share work items schema, check-

in policies, and process guidance.
 Reporting is harder since reports default to entire project, you must

add filtering by release.
 If you have hundreds of applications, each in its own project, you

may hit Team Foundation Server scalability limits.
 You will accumulate ‘baggage’ over multiple releases. Easiest

way to clean this up is to create a new project and branch code you
want to carry forward into that project.

• One project per release. Create a new project for each version of your
application.

o Reasons to use this structure:

 Works well if you want to start with a clean project after every
release.

 Old project can be used for maintenance and handed off to a
separate sustained engineering team.

 It is easy to move source from one project to another.
o Reasons not to use this structure:

 It is difficult to move work items and Team Foundation Server
assets from one project to another. Work items can only be copied
one at a time to another project. If you want to move sets of items
you’ll need to do so manually or write your own utility.

 If you are managing hundreds of projects you may hit Team
Foundation Server scalability limits.

Keep the following considerations in mind when choosing your strategy:

• Pick a structure you can live with, restructuring existing team projects is difficult.
• Source can be easily shared amongst team projects:

o Branch source from one project to another
o Map source from another project into your workspace

• Team Foundation Serveer can scale to ~500 projects using MSF Agile process or
250 projects using MSF CMMI process. If you create your own or customize an
existing process keep in mind that work item schema has the largest impact on
server scalability. A complex schema will result in a server capable of supporting
fewer projects.

Additional Resources
• For more information about Project strategy, see Eric Lee’s blog post “When to

use Team Projects”: http://blogs.msdn.com/ericlee/archive/2006/08/09/when-to-
use-team-projects.aspx

How to Organize Your Source Tree
Your source tree structure consists of a combination of folder structure, file structure, and
branch structure. Within your main branch the following folder and file structure has
been proven to work for teams of various sizes:

• Main - container for all assets you need to ship the product
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests
 Lib - container for binary dependencies

o Docs - container for documentation that ships with your product
o Installer - container for installer source code and binaries
o Builds - container for team build scripts
o Tests - container for test team tests

http://blogs.msdn.com/ericlee/archive/2006/08/09/when-to-use-team-projects.aspx
http://blogs.msdn.com/ericlee/archive/2006/08/09/when-to-use-team-projects.aspx

Any branches that you create off of main will copy this folder and file structure into the
new branch. For example:

• Dev – Development branch
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests
 Lib - container for binary dependencies

• Main – Integration branch
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests
 Lib - container for binary dependencies

o Docs - container for documentation that ships with your product
o Installer - container for installer source code and binaries
o Builds - container for team build scripts
o Tests - container for test team tests

Additional Resources
• For more information on creating a workspace, see “How to: Create a

Workspace”: http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

How to Define Workspace Mappings
To create a workspace mapping for a project that is not yet on your hard drive:
1. Select the root source folder in Source Control Explorer.
2. Right click and select Get Latest Version.
3. Choose the local folder to which you want to map the workspace.

To modify a workspace mapping for a project that is already on your hard drive:
1. Select File->Source Control->Workspaces…
2. Use the Manage Workspaces dialog box to add, remove or edit existing workspaces.

To view an existing workspace mapping:
1. Select a source folder in Source Control Explorer
2. Right-click and then click Properties.
3. The workspace mapping to your local drive appears in the Local Name field.

Consider the following best practices for creating workspace mappings:

• Create mappings at the team project root level. For new team projects, map
your team project root ($/MyTeamProject) to a folder with the same name on
your local drive for example C:\TeamProjects. Because mappings are recursive,
your entire local folder structure is created automatically and will be exactly the
same as the structure in source control.

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

• On shared computers, use a unique local folder path. Two users of a single
computer cannot share the same workspace mapping. For example, you and a
colleague cannot map the same team project ($/MyTeamProject) to the same
folder on the local computer. Instead, create mappings beneath My Documents
(although this leads to long location paths) or establish a team folder naming
convention on the local computer (e.g. C:\TeamProjects\User1,
C:\TeampProjects\User2 etc).

• You may not need the entire tree. To improve performance and reduce disk size
requirements only map the files you need for your development project. In
general you will only need the files and projects associated with the solution you
will be working on.

• Avoid using workspace mapping to support cross project dependencies. In
general you should avoid dependencies that cross team projects and try to have all
the related/dependent solutions/projects under same team project. This reduces the
need for build script customization. If you have a dependency, use project
references to define it or branch the dependency from a shared project into your
project. You should avoid file references as they are more difficult to manage.
The exception is when the dependent project is developed in parallel and you
need real-time changes. In this case, you can consider the using workspace
mapping. You may still consider branching to create a buffer of isolation, if the
dependent code is causing too many breaking changes

 Additional Resources
• For more information on creating a workspace, see “How to: Create a

Workspace”: http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en-us/library/ms245466(VS.80).aspx

How to use Workspaces to Isolate Code Changes on Your
Computer
As a developer you can create two workspaces, one containing references to files and
folders being worked on by the rest of the team, another containing files and folders that
you want to isolate. You might want to isolate these files in order to evolve specific files
in parallel with work that is happening elsewhere. For instance, this can be used to work
on risky pending changes, or to conduct a code review.

To create a secondary workspace:

1. Click the Workspace drop down within Source Control Explorer and then click
Workspaces.

2. In the Manage Workspaces dialog box, click Add.
3. In the Add Workspace dialog box, enter a new workspace name such as

MyIsolatedWork and provide a comment to serve as a future reminder about the
purpose of the workspace.

4. In the Working folders list, set the workplace status to Active, identify the
source control folder to be included in the workspace (this can be the team project

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms245466(VS.80).aspx

root folder or any sub folder) and specify a local folder path on your own
computer to contain the files from the workspace.

5. Click OK and then Close to create the isolated workspace.

To retrieve the latest set of source to begin work in your isolated workspace:

1. In source control explorer, make sure that your isolated workspace name is
selected from the Workspace drop down list.

2. Select your team project root folder, or a sub folder if you only need part of the
source tree, right-click and then click Get Latest Version. This copies the folder
structure and latest file set from the source control server to the local directory on
your computer which you mapped to the new workspace.

 Additional Resources
• For more information on creating a workspace, see “How to: Create a

Workspace”: http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx
• For more information on editing a workspace, see “How to: Edit a Workspace”:

http://msdn2.microsoft.com/en-us/library/ms245466(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms245466(VS.80).aspx

Security
• How to secure the channel between developer workstation and TFS

How to Secure the Channel Between Developer Workstation and
TFS
To secure the channel between developer workstation and TFS, you can configure your
Team Foundation Server to use HTTPS and Secure Sockets Layer (SSL). You can
configure your Team Foundation Server to use only HTTPS and SSL, and disallow
HTTP connections. In order to do this, you must first configure Team Foundation Server
to allow HTTPS and SSL, and then perform the additional steps to require HTTPS and
SSL.

Using HTTPS and SSL encrypts the network traffic between Team Foundation Server
and the Team Foundation clients that request access to Team Foundation Server's Web
resources, including team project portals, reports, and work items.

• Set up Team Foundation Server with Secure Sockets Layer (SSL). “Walkthrough:

Setting up Team Foundation Server with Secure Sockets Layer (SSL) ” at
 http://msdn2.microsoft.com/en-us/library/ms242875(VS.80).aspx

• Configure Team Foundation Server for HTTPS and SSL Only. “How to:
Configure Team Foundation Server for HTTPS and SSL Only ” at
http://msdn2.microsoft.com/en-us/library/aa395285(VS.80).aspx

Additional Resources
• For more information, see “Securing Team Foundation Server with HTTPS and

Secure Sockets Layer (SSL)”: http://msdn2.microsoft.com/en-
us/library/aa395265(VS.80).aspx

• For more information, see “Walkthrough: Setting up Team Foundation Server with
Secure Sockets Layer (SSL)”: http://msdn2.microsoft.com/en-
us/library/ms242875(VS.80).aspx

• For more information see “How to: Configure Team Foundation Server for HTTPS
and SSL Only”: http://msdn2.microsoft.com/en-us/library/aa395285(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms242875(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa395285(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa395265(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa395265(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms242875(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms242875(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa395285(VS.80).aspx

Shelving
• How to use shelving to backup pending work
• How to use shelving to share code with a team member

How to Use Shelving to Backup Pending Work
To backup pending changes to the server, shelve the files you are not yet ready to check
in. This ensures that the source is uploaded to the server without checking in partially
completed work that could potentially lead to build instability.

To shelve a set of pending changes, first view them, by right-clicking your solution in
Solution Explorer and clicking View Pending Changes. Select the files you want to
shelve and then click Shelve. Type a shelfveset name, a comment that identifies the
purpose of the shelveset and then click Shelve.

To restore your work the following day, from the File menu, point to Source Control
and then click Unshelve. Select the required shelveset and click Unshelve. Team
Foundation restores each shelved revision into the destination workspace as a pending
change as long as the revision does not conflict with a change that is already pending in
your workspace.

Additional Resources
• For more information on shelving pending changes, see “How to: Shelve and

Unshelve Pending Changes”: http://msdn2.microsoft.com/en-
us/library/ms181404(VS.80).aspx

How to use Shelving to Share Code with a Team Member
To shelve a source code for sharing code with a team member, perform a Get Latest
operation to synchronize your workspace with the latest server version and then build
your application to ensure that it compiles. Shelve the source using the Source Control
Explorer, the team member who has been handed off the code then needs to unshelve the
code.

Shelving is useful when you have work in progress that is to be completed by another
team member, you can shelve your changes to make a handoff easier. By synchronizing
the latest code, you get an opportunity to incorporate changes to source files that have
been made outside of your workspace.

To shelve folders and files from Source Control Explorer
1. In Source Control Explorer, right-click, and choose Shelve Pending Changes.
2. In the Shelve - Source Files dialog box, type the shelveset name, for example

shelvetest in the Shelveset name box.
3. In the Comment box, type Testing my shelveset, and then click Shelve.

http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx

The files and folders are copied to the source control server and are available for other
team members to unshelve.

When the other team member unshelve a shelveset, Team Foundation restores each
shelved revision into the destination workspace as a pending change as long as the
revision does not conflict with a change that is already pending in the workspace.
To unshelve a set of pending changes
1. In Visual Studio 2005 Team System, click File, point to Source Control, and then

click Unshelve.
2. In the Owner name box, type the shelveset creator's name (for example,

ADVENTUREWORKS\JuanGo or simply juango) and then click Find.
3. In the Results pane, select the shelveset you want to unshelve into your workspace,

and then click Details.
4. If you want to delete the shelveset from the Team Foundation source control server,

deselect the Preserve shelveset on server option.
5. Optionally deselect the Restore work items and check-in notes option if you do not

want to have the work items and check-in notes associated with the shelveset
restored.

6. When the Details dialog box appears, select the shelveset or shelveset items you want
to unshelve into your workspace, and then click Unshelve.

Additional Resources
• For more information see “How to: Shelve and Unshelve Pending Changes” at

http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx

Additional Resources
• Visual Studio Team System Guidance Project:

http://www.codeplex.com/VSTSGuidance

http://msdn2.microsoft.com/en-us/library/ms181383%28VS.80%29.aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://www.codeplex.com/VSTSGuidance

Questions and Answers: Team Foundation Server
Source Control and Versioning

Index
Accessing Version Control
• What is the MSSCCI Provider and when is it used?
• What other IDEs support TFS?
• When should I use the team foundation power tool?
• What are the most common version control extensibility scenarios?
• How do I work with version control from the command line?

Administration
• How do I grant permissions on a file within a folder that has inherited permissions?
• What do I do, if a developer has left the project?
• How do I manage interns or other developers that I do not trust to check-in?
• How should I modify permissions once my application has shipped?

Branch/Label/Merge
• When should I use labels?
• How do TFS labels differ from VSS labels?
• What is branching?
• When should I consider branching?
• What are the reasons to not branch?
• How do I use branching to release my application?
• How do I use branching to maintain my application?
• How do I use branching to reduce conflicts between teams
• How do I use branching to reduce conflicts between features
• What are the proven practices for branching and merging?
• What is the difference between branching and labeling?
• What is "path space" branching model?
• How does the TFS promotion model work?
• How do I merge two branches together?
• Can I merge across Team Projects?
• What is a baseless merge?
• What is the code promotion model?
• What is the difference between the logical and physical view of branches?
• If I use the code promotion model, how often should I merge?

Checkin and Checkin Policies
• What is a changeset?
• What's a check-in policy?
• When and how can I override check-in policy?
• How do I enforce a policy?
• How do I use a check-in verification system?
• If I modify file names or delete files on the disk does version control get out of sync?
• How does automatic conflict resolution work?
• How do I resolve conflicts manually?
• How do I avoid conflicts?

Checkout, Get, and Lock
• How do I find out who was the last developer to modify a file?
• How does get work?
• What's the difference between shared and exclusive checkout?
• When should I use the lock command?
• What are the different lock types that TFS supports?

Distributed/Remote Development
• How do I work off-line?
• How do I optimize for distributed team development?
• What is the version control proxy?
• How do I optimize version control proxy performance?

Migration
• How is TFS version control different than Visual Source Safe?
• How is the checkout model different from Visual SourceSafe?
• How should I migrate my source from VSS to TFS?
• How should I migrate my source from other version control systems?

Project/Workspace Management
• How should I organize my team projects?
• How should I manage dependencies between projects?
• What's a workspace?
• How do I use workspaces to isolate a developer?
• What are the proven practices for workspace mapping?
• What are the proven practices for managing shared components and code?
• When should I create a new Team Project versus create a new Branch?
• How should I manage source code that is shared across multiple projects?
• How should I manage binaries that are shared across multiple projects?

• How should I organize my source tree?

Reporting
• How do I create a custom report?
• How do I find out who was the last developer to modify a file?
• How do I find all of the changes associated with a work item?
• What reports are available out of the box?

Shelving
• What is shelving?
• What is a shelveset?
• When would I typically use shelving?
• How do I use shelving to back up my work?
• Why would I want to unshelve a shelveset?

Accessing Version Control
• What is the MSSCCI Provider and when is it used?
• What other IDEs support TFS?
• When should I use the team foundation power tool?
• What are the most common version control extensibility scenarios?
• How do I work with version control from the command line?

What is the MSSCCI Provider and when is it used?
The Microsoft Source Code Control Interface (MSSCCI) provider is used to provide an
integrated version control user experience with products that don't support the Visual
Studio Team Explorer. For example if you use Visual Studio 6.0 you can use the
MSSCCI client or command line to interact with Team Foundation Server Version
Control.

The following clients can work directly with Team Foundation Version Control by using
the MSSCCI provider:
• Visual Studio NET 2003
• Visual C++ 6 SP6
• Visual Visual Basic 6 SP6
• Visual FoxPro 9 SP1
• Microsoft Access 2003 SP2
• SQL Server Management Studio
• Sparx Systems Enterprise Architect 61
• Sybase PowerBuilder 105
• Toad for SQL Server 20

The MSSCCI provider behaves differently than Team Foundation Version Control in
Visual Studio 2005 in the following ways:
• Checkout also performs a GetLatest.
• An exclusive check-in lock is applied at checkout.
• Open-from source control and save-to source control behave like Visual SourceSafe.

More Information

• To read more about MSSCCI on MSDN, see “The Microsoft Source-Code
Control Interface”: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcug98/html/_asug_the_microsoft_source_code_control_interface.asp

• To learn more about the MSSCCI provider, see Update on the TFS MSSCCI
Provider: http://blogs.msdn.com/bharry/archive/2006/03/24/559876.aspx

• The MSSCCI add-in is a TFS power tool developed but not officially supported
by Microsoft. You can download the tool from MSDN:
http://www.microsoft.com/downloads/details.aspx?FamilyId=87E1FFBD-A484-
4C3A-8776-D560AB1E6198&displaylang=en

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcug98/html/_asug_the_microsoft_source_code_control_interface.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcug98/html/_asug_the_microsoft_source_code_control_interface.asp
http://blogs.msdn.com/bharry/archive/2006/03/24/559876.aspx

What other IDEs support TFS?
Team Foundation Server can be used from any SKU of Visual Studio 2005 with Team
Explorer installed. You can also run Team Explorer side-by-side with any non-Visual
Studio 2005 IDE in order to work with team projects and manage work items.

The following clients have integration solutions provided by other vendors:
• Eclipse
• Linux client
• Mac client
• HTML Web client

If you want access to Team Foundation Version Control from the Eclipse IDE, Linux, or
Mac, consider installing Teamprise: http://www.teamprise.com/

If you would like read-only access to Team Foundation Version Control from the Web,
consider installing TeamPlain Web Access: http://www.devbiz.com/teamplain/

More Information

• For more information on using Team Explorer, see:
http://msdn2.microsoft.com/en-us/library/ms242912(vs.80).aspx

• For more information on Teamprise, see http://www.teamprise.com
• For more information on TeamPlain, see http://www.devbiz.com/teamplain/

When should I use Team Foundation Power Tools?
The Team Foundation Power Tools (TFPT) provides version control functionality that is
not available from the UI. For example, you can use it to help support offline working or
to perform rollback operations to undo check-ins of a changeset. Consider using TFPT if
you need to perform any of the following operations:
• Unshelve: The unshelve operation supported by TFS does not allow shelved changes

and local changes to be merged together. By using TFPT to unshelve a change from a
change set, if an item in your local workspace has a pending change that is an edit,
and the shelved change is also an edit, then TFPT can merge the changes with a three-
way merge.

• Rollback: The ability to undo a checkin of a changeset is not directly supported by
TFS. By using the TFPT rollback command, you can attempt to undo any changes
made in a specified changeset. Not all changes can be rolled back but the rollback
works for most scenarios.

• Work Offline. The TFPT online tool allows you to work without a server connection
for a period of time by providing functionality that informs the server about changes
you make to your local workspace.

• Get a Changeset. The TFPT GetCS tool enables you to get all the items listed in a
changeset at that changeset version. This is useful if a colleague has checked in a
change which you need to have in your workspace, but you cannot update your entire
workspace to the latest version.

http://www.teamprise.com/
http://www.devbiz.com/teamplain/
http://msdn2.microsoft.com/en-us/library/ms242912(vs.80).aspx
http://www.teamprise.com/
http://www.devbiz.com/teamplain/

• Remove Pending Edits. The TFPT Undo Unchanged (UU) tool removes pending
edits from files which have not actually been edited. This is useful in a scenario
where you check out a large number of files for edit, but only actually make changes
to a small number of them. You can back out your edits on the unchanged files by
running the TFPT UU tool, which compares hashes of the files in the local workspace
to hashes the server has to determine whether or not the file has actually been edited

You run each of these commands from the command line by using Tfpt.exe.

More Information

• You can download Team Foundation PowerTools from here:
http://www.microsoft.com/downloads/details.aspx?FamilyID=7324c3db-658d-
441b-8522-689c557d0a79&DisplayLang=en

• A forum to discuss Team Foundation Power Tools:
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1

What are the most common version control extensibility
scenarios?
The most common version control extensible scenario is customizing a check-in policy in
order to enforce standards at check-in time. To create custom policy plug-ins that appear
in the Add Checkin Policy dialog box use the extensibility features provided in the
Visual Studio Team Foundation Server SDK. You can download the Visual Studio Team
Foundation Server SDK from http://go.microsoft.com/fwlink/?linkid=68586

Though not as common, it is also possible to write an integration layer to allow a non-
Visual Studio 2005 client to work with Team Foundation Version Control.

More Information

• To learn how to customize a check-in policy, see “Walkthrough: Customizing
Check-in Policies and Notes”, http://msdn2.microsoft.com/en-
us/library/ms181281(VS.80).aspx

• To see sample code that will disallow selected patterns on checkin, see Checkin
Policy to Disallow Certain Patterns:
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx

• To see sample code that will enforce comments on checkin, see Sample Checkin
Policy: Make Sure the Comment Isn't Empty:
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx

• To learn how to register a new checkin policy, see I've Made a New Check-In
Policy! How Do I Add It?:
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

• You can download the Visual Studio Team Foundation Server SDK from
http://go.microsoft.com/fwlink/?linkid=68586

http://www.microsoft.com/downloads/details.aspx?FamilyID=7324c3db-658d-441b-8522-689c557d0a79&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=7324c3db-658d-441b-8522-689c557d0a79&DisplayLang=en
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx
http://go.microsoft.com/fwlink/?linkid=68586

• To learn more about Team Foundation Version Control extensibility, see
“Walkthru:The Version Control Object Model”: http://msdn2.microsoft.com/en-
us/library/bb187335(VS.80).aspx

How do I work with version control from the command line?
Team Foundation Server provides the TF command line tool (Tf.exe) to enable you to
perform source control operations. For example, you can use the command line to
schedule operations by using the Windows Task Scheduler.

To ensure the appropriate path and other environment variables are setup, run the tool
from the Visual Studio 2005 Command Prompt window or run the Vsvars32 batch file,
which is normally located in DriveLetter:\Program Files\Microsoft Visual Studio
8\Common7\Tools. The command line supports most source control commands including
Commands, Checkin, Checkout, Get, History, Shelve, Branch, Merge, Label, Status,
Undelete, and Undo.

The following are common operations you may want to execute from the commandline:

• Synchronize files from the server to your local machine – tf get
• Add a file to the server – tf add
• Check out a file for editing – tf checkout
• Check in pending changes – tf checkin
• Retrieve a particular changeset from the server – tf get /version

There are certain operations that you can only do from the commandline:

• Delete another user's workspace – tf workspace /delete
• Undo another user's check-in – tf undo
• Unlock another user's lock – tf lock
• Define label scope – tf label
• Perform a baseless merge – tf merge

More Information

• MSDN: Walkthrough: Working with Team Foundation Source Control from
Command Line: http://msdn2.microsoft.com/en-us/library/zthc5x3f.aspx

• For more information on commands only available from the command line, see
“Operations Available Only From the Command-Line (Team Foundation Source
Control)”: http://msdn2.microsoft.com/en-us/library/ms194957(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/zthc5x3f.aspx
http://msdn2.microsoft.com/en-us/library/ms194957(VS.80).aspx

Administration
• How do I grant permissions on a file within a folder that has inherited permissions?
• What do I do, if a developer has left the project?
• How do I manage interns or other developers that I do not trust to check-in?
• How should I modify permissions once my application has shipped?

How do I grant permissions on a file within a folder that has
inherited permissions?
You set permissions by right-clicking the folder or file in Source Control Explorer,
clicking Properties, and on the Security tab, selecting the user or group for which you
want to change permissions, and editing the permissions listed in Permissions. You can
also set these permissions on the command-line by using the Permission command of the
TF command-line utility.

Team Foundation source control allows you to grant access control permissions to
Windows Groups, Windows Users, and Team Foundation Groups. Permissions can be
inherited from the containing folder, or you can declare permissions explicitly.
Permission settings are in the form of either Allow or Deny. Deny always overrides
Grant, even if Deny is inherited and Grant is explicitly defined. The inherited permissions
are combined with the explicit permissions to determine a user’s or group’s effective
permissions on an item. Deny always overrides allow. So, you can keep inherit turned on
and deny Checkin, for example.

You should be careful when turning inheritance off. You should first set the explicit
permissions required, make sure to assign your own account specific permissions, and
then turn inheritance off. If you turn inheritance off without setting the desired
permissions, you can lock yourself out of a file or folder and require a TFS administrator
who is also an administrator on the AT computer to fix the permissions. AT local
administrators can never completely lock themselves out by design.

More Information

• For more information, see "Team Foundation Server Default Groups,
Permissions, and Roles" on MSDN at http://msdn2.microsoft.com/en-
us/library/ms253077.aspx

• For more information, see "MSDN: Source Control Security Rights and
Permissions" at http://msdn2.microsoft.com/en-us/library/ms181761.aspx

What do I do, if a developer has left the project?
If a developer has left your project, make sure that you delete the developer's workspace.
This operation also removes any of the developer’s pending changes and undoes any
locks held by the developer. Note, you cannot undo the locks without undoing the
changes if exclusive lock is turned on for the team project.

http://msdn2.microsoft.com/en-us/library/ms253077.aspx
http://msdn2.microsoft.com/en-us/library/ms253077.aspx
http://msdn2.microsoft.com/en-us/library/ms181761.aspx

To find out which files the developer has locked out run the following command:

tf workspaces /owner:domain\devuser /computer:*
/server:servername

To delete the workspace, and remove locks, run the following command:

Tf workspace /delete workspacename;domain\devuser
/s:servername

More Information

• For more information on cleaning up after a developer who has left, see “How to:
Clean Up Files When Users Leave”: http://msdn2.microsoft.com/en-
us/library/ms194958(VS.80).aspx

• For more information on the Workspace command, see “Workspace Command”:
http://msdn2.microsoft.com/en-us/library/y901w7se(VS.80).aspx

How do I manage interns or other developers that I do not trust
to check-in?
Un-trusted developers, such as new hires or interns, may be denied check-in permission
on the source tree. Make sure that you set your desired permissions (including
permissions for your own account) before turning off inheritance. Rather than check-in
directly they can make pending changes and then shelve these changes. A more
experienced developer can unshelve the changes, review them, and then check them in.

More Information

• For more information on removing permissions, see “How to: Remove Access to
Source Control Files”: http://msdn2.microsoft.com/en-
us/library/ms400718(VS.80).aspx

How should I modify permissions once my application has
shipped?
Once a branch is in maintenance, for instance after it has been shipped, you can turn off
inheriting permissions to lock down the tree. Once you’ve done this, you may allow
individual users the pend-change and check-in permissions as needed for hot fixes.

More Information

• For more information on removing permissions, see “How to: Remove Access to
Source Control Files”: http://msdn2.microsoft.com/en-
us/library/ms400718(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms194958(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms194958(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/y901w7se(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms400718(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms400718(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms400718(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms400718(VS.80).aspx

Branch/Label/Merge
• When should I use labels?
• How do TFS labels differ from VSS labels?
• What is branching?
• When should I consider branching?
• What are the reasons to not branch?
• How do I use branching to release my application?
• How do I use branching to maintain my application?
• How do I use branching to reduce conflicts between teams
• How do I use branching to reduce conflicts between features
• What are the proven practices for branching and merging?
• What is the difference between branching and labeling?
• What is "path space" branching model?
• How does the TFS promotion model work?
• How do I merge two branches together?
• Can I merge across Team Projects?
• What is a baseless merge?
• What is the code promotion model?
• What is the difference between the logical and physical view of branches?
• If I use the code promotion model, how often should I merge?

When should I use labels?
Use labels to group a set of files and folders together for future operations. You can use
labels for branching, merging, diffing, or getting files. A label provides a marker to which
you can return when performing one of the above operations at a later date.

The Team Foundation Build automatically labels the file versions associated with each
build that it creates.

Note: If you are unsure whether you need a branch or not, you can label a set of files and
later create a branch based on this label.

More Information

• For more information, see “Working with labels”: http://msdn2.microsoft.com/en-
us/library/ms181439(VS.80).aspx

• For more information on labels, see “How to: Apply Labels”:
http://msdn2.microsoft.com/en-us/library/ms181440(VS.80).aspx

How do TFS labels differ from VSS labels?
TFS labels are quite different from VSS labels. VSS labels are “point in time” labels that
you normally assign to all or part of a tree in VSS. VSS therefore displays labels in time

http://msdn2.microsoft.com/en-us/library/ms181439(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181439(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181440(VS.80).aspx

sequence along with the file history. Everything before the labeled file in the list is
included in the label and everything after it is not.

In TFS, instead of being a single point in time, labels tie together specific versions of a
set of source files. A common scenario for labels is to use them to mark daily builds. This
allows you to easily retrieve the source file set corresponding to a particular build, for
example if you need to apply a fix.

More Information

• For more information, see “Comparing SourceSafe Labels to Team Foundation
Server Labels” at
http://blogs.vertigosoftware.com/teamsystem/archive/2006/05/03/Comparing_Sou
rceSafe_Labels_to_Team_Foundation_Server_Labels.aspx

What is branching?
Branching (also known as forking) is the act of splitting a collection of files into separate
development paths. TFS supports branching and sophisticated merging which allows you
to join files from separate branches back together. For instance, you can use branching to
isolate major releases of your application. Once you have branched the released version
of your application you can more easily maintain it in the future. Merging allows you to
selectively make fixes to both branches.

The purpose of branching and merging is to allow you to isolate concurrent streams of
development. For instance you create a branch when your team has produced a build that
you want to maintain going forward. You could also choose to branch in order to isolate
feature teams in a very large development organization, or to support development on
multiple versions of your application at once.

Team Foundation Server Version Control does not make separate copies of the file
content when you branch it, so it does not consume a lot of additional space in the source
control database. A branch consists of a pointer in the database to the source content in
the list of deltas that modify it from the base version.

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

http://blogs.vertigosoftware.com/teamsystem/archive/2006/05/03/Comparing_SourceSafe_Labels_to_Team_Foundation_Server_Labels.aspx
http://blogs.vertigosoftware.com/teamsystem/archive/2006/05/03/Comparing_SourceSafe_Labels_to_Team_Foundation_Server_Labels.aspx
http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

When should I consider branching?
Branches enable multiple developers to work on the same files in isolation. Merging has
overhead and requires you to manage conflicts, don’t branch unless you need the file
isolation it provides. You can label a build and branch later if needed.

The decision whether to create a branch can be boiled down to the following:

• Will the cost of merging conflicts in real time be higher or will the overhead cost
of merging conflicts between branches be higher?

Common reasons to branch include:

• Release – Branch for builds you want to maintain or branch for multiple releases
in parallel.

• Maintenance – Branch to maintain a previously released build.
• Feature – Isolate work on experimental or risky features that might cause

instability to the rest of the project. Isolate work on interface change that will
cause instability for the rest of the project.

• Team – Isolate sub teams so they can work without being subject to breaking
changes from other teams. Isolate sub teams so they can work towards unique
milestones. This are very similar to feature branches.

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

What are the reasons to not branch?
Do not branch unless your development team needs to work on the same set of files
concurrently. If you are unsure, you can label a build and create a branch from that at a
later point. Merging branches, especially if there are significant changes between them,
can be costly.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

Merging requires one or more developers to execute the merge and sort out conflicts. The
merged source must be thoroughly tested as it is not uncommon to make bad merge
decisions that can destabilize the build.

Merging across the branch hierarchy is especially difficult and requires you to manually
handle many conflicts that could otherwise be handled automatically.

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How do I use branching to release my application?
Use a Release branch when you are ready to stabilize your build prior to release.

The following is an example of what your branch structure may look like after you have
created a Release branch:

• Main – Integration Branch
o Source
o Other Asset Folders

• Release 1 – Release branch
o Source

Keep the following recommendations in mind when working with a release branch:

• When to branch: When you are ready to release, integrate everything into the
Main branch and then create a release branch that can be used to stabilize the
application prior to release.

• When not to branch: If you are using one TFS project per release, then you can
use the new project to continue development instead of a branch in the current
project.

• Permissions on branch:
• Prior to release – Read/write for all developers.
• After release – Read/write for developers working on hot fixes, read-only for

everyone else.
• Build frequency in branch: On-demand builds.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

• Testing focus in branch: Sign off on release.

You should use the Release branch for the targeted fixes and changes necessary in order
to stabilize a build prior to release. Development of the next version of your application
can occur in parallel in your main development or integration branches so they can get
the benefit of the stabilization changes you made prior to release. Once a final release
build has been created, you can merge the changes from the release branch back into your
main development and integration branches

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How do I use branching to maintain my application?
Use maintenance branches to support previously released builds.

The following is an example of what your branch structure may look like after you have
moved a release to the maintenance folder:

• Main – Integration Branch
o Source
o Other Asset Folders

• Maintenance – Container for maintenance branches
o Release 1 – Maintenance Branch

 Source

Keep the following recommendations in mind when working with a release branch:
Keep the following recommendations in mind when working with a maintenance branch:

• When to branch: After you have released, move your release branch into the
maintenance folder. Ongoing maintenance should occur in this branch unless you
are creating a new supportable version. For instance, create another maintenance
branch when working on a service pack that will be released as its own SKU.

• When not to branch: If you will not ever need to maintain the release, you can
use a label to mark the old released build and continue work in the main branch.

• Permissions on branch: Read/write for developers working on hot fixes, read-
only for everyone else.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

• Build frequency in branch: On-Demand builds.
• Testing focus in branch: Sign off on release.

You should use maintenance branches to support an older version of your application.
You might choose to merge these changes into your main integration branch, or leave
them specific to the maintenance branch.

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How do I use branching to reduce conflicts between teams?
Use team branches to improve the integration and stabilization of breaking changes
across teams.

The following is an example of what your branch structure may look like after you have
created team branches:

• Development - Container for team branches
o Team 1 - Team branch

 Source
o Team 2 - Team branch

 Source
• Main – Integration branch

o Source
o Other Asset Folders

Keep the following recommendations in mind when you work with a release branch:

• When to branch: If your development teams overlap on files and components,
use team branches to isolate each team’s work. You might also choose to create
feature branches beneath the team branches.

• When not to branch: If your source tree is organized by component, and you are
confident that there will not be breaking interface changes or a large number of
check-in conflicts across your teams, then you probably do not need team
branches.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

• Permissions in branch: Read/write for developers on the team, read-only for
everyone else

• Build frequency on branch: Continuous integration builds
• Testing focus in branch: Feature and quick feedback testing

The team branches should be used to allow teams to complete development tasks in
parallel. This can be useful to isolate teams from breaking changes originating on other
teams, or to allow teams to work towards unique milestones. All active development
should occur in the team branches and then integrated into the Main branch. You may
also want to create feature branches beneath each team branch.

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

How do I use branching to reduce conflicts between features?
Use feature branches to improve the integration and stabilization of breaking changes
across features.

The following is an example of what your branch structure might look like after you have
created feature branches:

• Development – Container for feature branches
o Feature A – Feature branch

 Source
o Feature B – Feature branch

 Source
o Feature C – Feature branch

 Source
• Main – Integration branch

o Source
o Other Asset Folders

Keep the following recommendations in mind when working with a release branch:

• When to branch: Feature teams often have source file overlap, increasing the
potential for build breaks and check-in conflicts. If you are experiencing these

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

problems, consider feature branches for each feature to provide feature isolation.
You can create these off a main branch for small teams or off a team branches for
larger teams.

• When not to branch: If you are only creating continuous integration builds, or
your daily builds are already predictably stable you might not need the extra
overhead of feature branches.

• Permissions in branch: Read/write permissions for developers on the feature
branch, read-only for everyone else.

• Build frequency on branch: Continuous integration builds.
• Testing focus in branch: Feature and quick feedback testing.

Use the feature branch to allow each feature to be developed in parallel. Perform all
active development in the feature branches and then integrate your code into the Main
branch.

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

What are proven practices for branch structure?
When branching, consider the following guidelines:

• Structure your branch trees so that you only need to merge along the hierarchy (up
and down the branch tree) rather than across the hierarchy. Branching across the
hierarchy requires that you use a baseless merge which requires more manual
conflict resolution.

• The branch hierarchy is based upon the branch parent and branch child, which
may be different than the physical structure of the source code on disk. When
planning your merges, keep the logical branch structure in mind rather than the
physical structure on disk.

• Do not branch too deeply. Because there is latency in merging branches, a deep
branching structure can mean that changes in a child branch may take a very long
time to propagate to the main branch. This can negatively impact project
schedules and increase the time to fix bugs.

• Branch at a high-level and include configuration and source files.
• Allow your branching structure to evolve over time.

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

• Do not branch unless your development team needs to work on the same set of
files concurrently. If you are unsure, you can label a build and create a branch
from that at a later point. Merging branches, especially if there are significant
changes between them, can be costly.

• Merging requires one or more developers to execute the merge and sort out
conflicts. The merged source must be thoroughly tested as it is not uncommon to
make bad merge decisions that can destabilize the build.

• Merging across the branch hierarchy is especially difficult and requires you to
manually handle many conflicts that could otherwise be handled automatically.

More Information

• For additional Branching and Merging guidance, see the Team Foundation Server
Branching Guidance project on CodePlex:
http://www.codeplex.com/BranchingGuidance

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control”:
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

What is the difference between branching and labeling?
Branches are designed to split a collection of files into separate development paths. You
use branching to isolate two sets of file versions so that you can evolve the two paths
separately. For example, you can use branches to manage and maintain older released
versions of your application. You can also use branches to isolate risky code changes that
span multiple developers so that team impact is minimized. However, if you need to
isolate only a single developer, use workspaces to reduce branch and merge complexity.

Labels are used to tag a file or collection of files with a distinct notation so that it may be
retrieved later. For instance, you can use labels to mark daily builds to ease future
retrieval for example if you want to address an issue related to that release.

More Information

• For more information on the Branch command, see “Branch Command”:
http://msdn2.microsoft.com/en-us/library/d73s8b27(VS.80).aspx

• For more information on the Label command, see “Label Command”:
http://msdn2.microsoft.com/en-us/library/9ew32kd1(VS.80).aspx

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/d73s8b27(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/9ew32kd1(VS.80).aspx

What is "path space" branching model?
Branches are created within the path structure of the repository, similar to file copy
operations. This is different than the pin-and-share mechanism used by Visual
SourceSafe. This makes it easier to maintain old versions of your software, because it's
simpler to merge changes from one branch to another or make changes in two branches at
once.

Team Foundation Server Version Control does not make separate copies of the file
content when you branch it, so it does not consume a lot of additional space in the source
control database. A branch consists of a pointer in the database to the source content in
the list of deltas that modify it from the base version.

More Information

• For an introduction to branching and merging, see “Branching and Merging
Primer”: http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

How does the TFS promotion model work?
A promotion model is the means by which a change is propagated from one branch to
another. Visual SourceSafe also had branching and merging but in practice customers
used pinning and sharing as a crude promotion model. Team Foundation Server Version
Control uses branching and merging to support promotion modeling. You can use
multiple branches to isolate specific versions of the application you're working on. You
can propagate a change by merging from files in one branch to the files in another
branch.
More Information

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• To learn more about the differences between Visual SourceSafe and Team
Foundation Server Version Control, see Visual Source Safe vs. Team Foundation
Server: http://msmvps.com/blogs/vstsblog/archive/2005/07/02/56401.aspx

How do I merge two branches together?
To perform a merge you can use the merge functionality in Source Control Explorer or
you can use the merge command line. You can merge by changeset, label, date, or
version.

You may find that your branching structure becomes deeper than one level. If this
happens, keep in mind that it is only possible to merge one level at a time. For instance,
imagine the following source tree structure:

• Development – Container for isolation development branches.

http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msmvps.com/blogs/vstsblog/archive/2005/07/02/56401.aspx

o Feature A
 Source

o Feature B
 Source

• Main – Main integration build branch
o Source
o Other Asset Folders

• Production – Branch containing the code you are currently locking down to release
• Maintenance – Container for production release branches, which needs isolated

parallel development, may be for patches or hot fixes.
o Release 1

 Source
o Release 1 Service Pack 1

 Source

When the source code contained in the Production branch changes, you may want to
eventually merge that change into a feature branch, for instance to incorporate a bug fix
into the latest feature code. It is not easy to merge directly from Production into
Feature B, instead you merge from Production into its logical parent, Main, and then
from Main into its logical child Feature B. If you need to merge between branches that
do not have a direct parent child relationship you need to perform a baseless merge.

More Information

• To learn how to merge files and folders, see How to: Merge Files and Folders:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• To learn more about baseless merge, see the /baseless option in “Merge
Command”: http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx

Can I merge across Team projects?
Yes, There is nothing special about merging across team projects. Regular merges work
in this scenario. The Team Project Creation Wizard enables you to create a team project
as a branch of a different one.

More Information

• For more information on merging, see “How to: Merge Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

What is a baseless merge?
The branch command will create a relationship between two folders which you can
leverage to perform merges of code between the branches. Branches that are not a direct
child or a direct parent of the merge target do not have this relationship. A baseless
merge “performs a merge without a basis version. That is, allows the user to merge files
and folders that do not have a branch/merge relationship. After a baseless merge, a merge
relationship exists and future merges do not have to be baseless”.

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

A baseless merge will result in many more conflicts than a normal merge. After the first
baseless merge, future merges between these branches will no longer be baseless and
conflicts should be at a minimum.

Baseless merges can only be created from the command line. Even after the first baseless
merge, when a relationship has been created between the branches, future merges still
need to be created from the command line.

More Information

• To learn how to merge files and folders, see How to: Merge Files and Folders:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• To learn more about baseless merge, see the /baseless option in “Merge
Command”: http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx

• For more information about other merging options please see "Merge Command"
at http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx

• Team Foundation Server Branching Guidance:
http://www.CodePlex.com/BranchingGuidance

What is the code promotion model?
Code promotion is a strategy that uses branches to promote code through some
stabilization phases. For instance, you may have a Dev branch in which your team does
active development, a Main branch in which your team is integration and testing, and a
Production branch that your team uses for final release stabilization.

More Information

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

What is the difference between the logical and physical view of
branches?
The physical view is the hierarchy that appears within your source tree. For example:

• $/MyTeamProject
o Development

 Source
o Main

 Source
o Maintenance

 Release1
• Source

 Release2
• Source

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

Development, Main, Release1, and Release2 are branches that directly contain source
code. Maintenance is a folder that contains multiple branches.

The logical view is the hierarchy of parent and child branches as they were created. This
hierarchy is not shown in the source tree but can be visualized based upon how each
branch was created. For example:

• Main
• Development
• Release1
• Release2

The logical view is important because merging is easiest when you do it up and down the
logical hierarchy. If you execute a merge across the hierarchy you have to do a baseless
merge which requires use of the commandline and significantly more conflict resolution.

More Information

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• To learn how to merge files and folders, see How to: Merge Files and Folders:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

• To learn more about baseless merge, see the /baseless option in “Merge
Command”: http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx

If I use the code promotion model, how often should I merge?
Merge frequency depends upon your branch structure. For instance, a common branch
structure is as follows:
• Development – Container for isolation development branches.

o Feature A
 Source

o Feature B
 Source

• Main – Main integration build branch
o Source
o Other Asset Folders

• Production – Branch containing the code you are currently locking down to release
• Maintenance – Container for production release branches, which needs isolated

parallel development, may be for patches or hot fixes.
o Release 1

 Source
o Release 1 Service Pack 1

 Source

In this case active development is occurring in the feature branches, and you have two
merge frequency decisions to make:

1. How often should feature teams merge changes from main into their feature
branch?

http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

2. How often should feature teams merge their changes into the main branch?

The following merge frequency is a proven strategy to reduce breaking changes and
reduce migration times:

1. Feature teams should merge their changes into main as soon as the feature is
complete.

2. Feature teams should merge changes from main on a regular basis to ensure
integration compatibility of their features when they are complete. Ideally you
should merge once per day, and not go more than a couple of days between
merges.

More Information

• To learn how to merge files and folders, see How to: Merge Files and Folders:
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

Checkin and Checkin Policies
• What is a changeset?
• What's a check-in policy?
• When and how can I override check-in policy?
• How do I enforce a policy?
• How do I use a check-in verification system?
• If I modify file names or delete files on the disk does version control get out of sync?
• How does automatic conflict resolution work?
• How do I resolve conflicts manually?
• How do I avoid conflicts?

What is a changeset?
A change-set represents the set of changes associated with a check-in. All changes in the
change-set are applied to TFS in an atomic fashion when you check-in the change-set.
Change-sets are identified by unique, sequentially increasing, numbers.

Later in time you can retrieve a change-set to view details of what files changed, check-in
comments, and associated work items. You can also retrieve the file versions associated
with the change-set if you need to review, test, or build, with the old change.

More Information

• For more information on retrieving changesets, see “How to: Retrieve Old
Versions of Files from Changesets”: http://msdn2.microsoft.com/en-
us/library/ms181416(VS.80).aspx

What's a check-in policy?
You can use check-in policies to enforce coding standards at check-in time. For instance,
you can automatically run FxCop static code analysis on code as it is checked in to ensure
that the relevant rules are satisfied.

The following check-in policies are available by default:

• Code Analysis. Requires that code analysis be run before check-in.
• Test Policy. Requires that check-in tests be completed before check-in.
• Work Items. Requires that one or more work items be associated with the check-

in.
You can create a custom check-in policy to perform checks that are not available by
default. For instance, you can disallow code patterns such as banned API calls, you can
force the use of check-in comments, or you can check against your team's style
guidelines.

More Information

http://msdn2.microsoft.com/en-us/library/ms181416(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181416(VS.80).aspx

• To learn how to customize a check-in policy, see “Walkthrough: Customizing
Check-in Policies and Notes”, http://msdn2.microsoft.com/en-
us/library/ms181281(VS.80).aspx

• To see sample code that will disallow selected patterns on checkin, see Checkin
Policy to Disallow Certain Patterns:
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx

• To see sample code that will enforce comments on checkin, see Sample Checkin
Policy: Make Sure the Comment Isn't Empty:
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx

• To learn how to register a new checkin policy, see I've Made a New Check-In
Policy! How Do I Add It?:
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

When and how can I override check-in policy?
You can override a check-in policy by clicking the, "override policy failure and continue
check-in" checkbox. Anyone with permission to check in files can override a check-in
policy.

If you would like to detect when a member of your team overrides check-in policy you
can use the Team Foundation Eventing Service to hook check-in events.

More Information

• To learn more about overriding a check-in policy, see “How to: Override a
Check-in Policy”: http://msdn2.microsoft.com/en-
us/library/ms245460(VS.80).aspx

• To learn more about the Team Foundation Eventing Service, see “Eventing
Service”: http://msdn2.microsoft.com/en-us/library/bb130154(vs.80).aspx

How do I enforce a policy?
Team Foundation Version Control will not prevent someone from overriding a policy.
However, you can use the following steps to detect if a policy has been overridden:

• Use the Team Foundation Eventing Service (from the Team Foundation Core
Services API) for hooking in to check-in events.

• Write a Notify method that parses the details of the changeset and then react to it
if an override has occurred

Alternatively, you can manually scan changeset history to discover policy overrides.

More Information

• To learn how to receive an e-mail when a policy has been violated, see:
http://blogs.infosupport.com/marcelv/archive/2005/10/18/1635.aspx

http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx
http://msdn2.microsoft.com/en-us/library/ms245460(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms245460(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb130154(vs.80).aspx
http://blogs.infosupport.com/marcelv/archive/2005/10/18/1635.aspx

How do I use a check-in verification system?
You can use Team Foundation Version Control check-in policies as a check-in
verification system. Team Foundation ships with check-in policies to ensure the
following is true before a check-in can be committed:

• A work item is associated with the change
• Unit tests have all passed
• Static analysis has run cleanly

You can create your own check-in requirements by creating new policy plug-ins. Your
plug-in can ensure that code matches your team's coding standards, has run build
verification tests, or any other requirement that is critical to your team's needs.

More Information

• To learn more about creating and customizing check-in policies, see
Walkthrough: Customizing Check-in Policies and Notes:
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx

If I modify file names or delete files on the disk does version
control get out of sync?
Yes. If you accidentally delete files or folders the Team Foundation Server still thinks
you have the latest versions locally. This means that the get latest version command will
not add the deleted files back onto your disk. Use the force get command in order to
restore the files or folders.

If you need to rename files or delete files or folders do so through the source explorer so
the server stays synchronized with your local changes.

More Information

•

How does automatic conflict resolution work?
A conflict can occur due to a pending change, merge, or get operation. When you select
to resolve the conflict you can choose to have Visual Studio resolve the conflict
automatically. Automatic conflict resolution only works on non-binary files which have
no overlapping changes (for example changes applied to the same line of code). In this
case changes for both file versions are merged into a new file version.

If automatic conflict resolution does not work you can choose to only accept changes
from one of the files, or you can perform a manual merge by using the graphical compare
and differencing tools provided by VSTS.

More Information

http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx

• For more information on resolving conflicts, see How to: Resolve Conflicts:
http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx

How do I resolve conflicts manually?
To resolve merge conflicts use the Visual Studio merge tool. If a conflict is detected
during a merge you can resolve conflicts automatically or resolve them manually. If you
choose to resolve the conflict manually you can keep the source changes, keep the target
changes, or resolve the conflict in the merge tool.

You may need to resolve conflicts when merging changes between branches, getting files
into your workspace, or checking in new versions of files. There are three conflict types:

• Version. The file has evolved along divergent paths. This could be the result of a
file edit, rename, delete, or undelete.

• File Name Collision. Two or more items are trying to occupy the same path.
• Local Overwrite. Only occurs during a get operation, if you are trying to

overwrite a local, editable file.

Most conflicts can be resolved automatically, version conflicts are the only conflict type
that may result in a manual merge operation. Manual merge is most common in the
following scenarios:

• A file has been edited in both branches with changes to the same lines of code.
• A baseless merge is being conducted in which the branch file relationships are not

known to Team Foundation Server.

The merge tool shows you the details for each conflict and allows you to choose which
change you want to keep in the final merged file. You can choose to keep the source
change, the destination change, integrate both changes, or you can manually modify the
final version by typing directly into the file.

When you have resolved every conflict in the file save the final version as a pending
change to be checked into the target branch.

Be careful when merging, it is easy to make mistakes that may result in build instability.
Once you are done merging, compile the resulting source and run unit tests to test for
major breaks.

More Information

• For more information on resolving conflicts, see How to: Resolve Conflicts:
http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx

How do I avoid conflicts?
Most conflict can be automatically resolved by Team Foundation Version Control. The
scenarios in which you're most likely to need a manual merge, and therefore are worth

http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181433(VS.80).aspx

avoiding, are scenarios in which there are overlapping changes (to the same lines of code)
or more than two developers working on a file at the same time.

To see pending changes use the following steps:

• From within the Source Control Explorer right click on the solution, project,
folder, or file for which you want to see pending changes

• Select View Pending Changes

This method will show you all of the pending changes within the scope you’ve selected.

If you use the command line checkout tool it informs you which other users have checked
out this file including information about the nature of their pending changes. In the
following example, a file called Math.cs is checked out and Team Foundation provides a
notification that two other users are working on the file (James and Sally). The
notification indicates exactly what type of pending change each user has in their local
workspace (Edit and Rename) and confirms that the local version of the file, the current
workspace version, is not based on the latest repository version.

c:\dev\projects\calc\src>tf edit math.cs
ExplorerScc.cs

$/MathProject/dev/calc/src/math.cs:
 opened for edit in Workspace21;contoso\james
 opened for rename in WS24;contoso\sally
 newer version exists in the repository

You should communicate regularly with other developers to indicate the nature of your
changes on a particular file to help avoid overlapping changes that need to be manually
merged. Coordination is a good way to make sure you do not work on the same part of
the code, but otherwise there is nothing wrong with two or more people editing different
parts of the same file.

More Information

• For more information on viewing pending changes in your workspace, see “How
to: View and Manage All Pending Changes in Your Workspace”:
http://msdn2.microsoft.com/en-us/library/ms181400(VS.80).aspx

• For more information on viewing pending changes in other workspaces, see “How
to: View Pending Changes in Other Workspaces”:
http://msdn2.microsoft.com/en-us/library/ms181401(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181400(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181401(VS.80).aspx

Checkout, Get, and Lock
• How do I find out who was the last developer to modify a file?
• How does get work?
• What's the difference between shared and exclusive checkout?
• When should I use the lock command?
• What are the different lock types that TFS supports?

How do I find out who was the last developer to modify a file?
You can do this by examining the file’s history. To do so, right-click the file in Solution
Explorer and click View History. This displays the History window which shows the
list of modifications and users who made those modifications. The last developer to
modify the file is shown at the top of the list. You can also view version history for a file
from the command line by using the History command from the tf.exe command line
tool.

More Information

• For more information on file history, see “How to: View Historical Data”:
http://msdn2.microsoft.com/en-us/library/ms181415(VS.80).aspx

How does get work?
Get is used to synchronize the files on your machine with the files on the Team
Foundation Server. When you perform a "get" operation, Visual Studio conducts the
following steps. Note that the following sequence assumes that you have installed TFS
proxy in order to boost performance:
• The server determines which files are out of date based on the fact that it knows

which versions are on your disk.
• The server then tells the client what it needs to do to update its workspace.
• The client downloads, moves, and deletes files as necessary and notifies the server of

which operations it accomplished.

Get does not mark any files for editing and it will not, by default, overwrite any files you
have checked out for editing.

More Information

• For more information on the get command, see “Get Command”:
http://msdn2.microsoft.com/pt-br/library/fx7sdeyf(VS.80).aspx

What's the difference between shared and exclusive checkout?
Team Foundation Source Control supports shared and exclusive checkouts. With an
exclusive checkout, nobody else can check out a file until you check it back in. This can
lead to bottlenecks in the development process.

http://msdn2.microsoft.com/en-us/library/ms181415(VS.80).aspx
http://msdn2.microsoft.com/pt-br/library/fx7sdeyf(VS.80).aspx

By default, Team Foundation also enables multiple users to check out the same source-
controlled item concurrently. This is referred to as shared checkout. With this model,
multiple developers can be working on copies of the same source file in their own
workspaces. TFS knows which version is in your workspace and you must resolve
conflicts prior to checkin.

In most collaborative development environments, the probability that you will make a
change in your workspace that conflicts with a pending change in another workspace or
vice versa, is unlikely. A great majority of workspace conflicts that do occur are resolved
automatically by Team Foundation. For conflicts that cannot be resolved automatically,
you can use the Resolve command to safely decide which change, yours or someone
else's, you want to keep.

More Information

• For more information on locks, see “How to: Lock and Unlock Folders or Files”:
http://msdn2.microsoft.com/en-us/library/ms181420(VS.80).aspx

When should I use the lock command?
The lock command can be used to prevent other developers from checking out or
checking in their changes until you unlock the file. You should only lock a file, if you're
concerned that there will be a conflict resulting in a complicated manual merge operation.
Since most conflicts can be resolved automatically, you should use the lock command
sparingly, if at all.

More Information

• For more informational on lock types, see: http://msdn2.microsoft.com/en-
us/library/ms181419(VS.80).aspx

What are the different lock types that TFS supports?
Team Foundation provides two types of locks: check-in and checkout. A check-in lock is
less restrictive than a check-out lock. When you apply a check-in lock, users can continue
to make local changes to the item in other workspaces. The changes cannot be checked in
until you explicitly remove the check-in lock from the workspace or you check the file in.

A check-out lock is more restrictive than a check-in lock. When you apply a check-out
lock to a source-controlled file or folder, users can neither check out the file for edit nor
check in pre-existing pending changes. You cannot acquire a check-out lock if there are
currently any pending changes to an item.

More Information

• For more informational on lock types, see: http://msdn2.microsoft.com/en-
us/library/ms181419(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181420(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181419(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181419(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181419(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181419(VS.80).aspx

Distributed/Remote Development
• How do I work off-line?
• How do I optimize for distributed team development?
• What is the version control proxy?
• How do I optimize version control proxy performance?

How do I work off-line?
Off-Line is not supported natively by Team Foundation Version Control. If you want to
work off-line you must adhere to strict workflow:

1. Manually remove read-only flag
2. Edit files
3. Add or delete files
4. Run the Team Foundation Power Tool (TFPT) online command

You must not rename any files while you're off-line.

1. Manually remove read-only flag
By default, all files in the workspace that have not been checked out are marked as read-
only. When you're working without a server connection, you must manually remove the
read-only flag from files before editing or deleting them. You can do this by right
clicking the file in the Windows Explorer, click properties, uncheck the read-only box
and click okay. Or you can use the DOS command “attrib -r”

2. Edit files
You may now freely edit any files for which you have removed the read-only flag.

3. Add or delete files
You may add files or delete files for which you have removed the read-only flag. Do not
rename files, as the TFPT online tool cannot distinguish a rename from a deletion paired
with an add. Note that you have to specify an option to the Tfpt online command to get it
to look for deletes, as this is a more time consuming operation.

4. Run the TFPT online command
When you are back online, run the TFPT online command by typing "TFPT online" at the
commandline. This command scans your workspace for writable files and determines
what changes should be pended on the server. If you have deleted any files, use the
/deletes commandline option. This tells the tool to scan for deleted files in your local
workspace as well. The tool then displays the online window from which you can choose
which changes to pend into the workspace.

More Information

• You can download the TFPT online tool from MSDN:
http://www.microsoft.com/downloads/details.aspx?FamilyId=3F21144A-4E98-
4CE0-830F-D1F3E8AC9D67&displaylang=en

• To learn more about Team Foundation Power Tools, see Power Tools: tfpt.exe:
http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx

How do I optimize for distributed team development?
If you are supporting an office with multiple clients connecting to a remote Team
Foundation Server, install and configure Team Foundation Server Proxy in the Remote
Office. This improves performance by caching source control files in the remote office’s
proxy.

If you are supporting a single client connecting to a remote Team Foundation Server,
configure the client to connect directly to the Team Foundation Server.

More Information

• To learn more about the Team Foundation Server Proxy, see MSDN: Team
Foundation Server Proxy and Source Control, http://msdn2.microsoft.com/en-
us/library/ms252490(VS.80).aspx

• To learn more about the TFS Proxy File Cache Server, see the MSDN Webcast:
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-
US&EventID=1032291120&CountryCode=US

What is the version control proxy?
Client and server communication in TFS uses HTTP. The TFS Version Control proxy is
installed on a server at remote locations (team locations separated by a wide-area
connection from the TFS database) to boost performance and to avoid unnecessary
roundtrips to the server. The proxy caches copies of source controlled files in the remote
location away from the central TFS server. When a file is not in the local cache, the file is
downloaded by the proxy to the local cache from Team Foundation Server, before
returning the files to the client.

Although remote access is the most common scenario for using the proxy, you can also
use it anytime you want to take load off of the main server. For instance, if your server is
bogged down by many local simultaneous requests to get the latest source, you can
offload this work to the proxy. Every AT includes a proxy in it. So, generally there is
nothing to be gained by putting a proxy in front of an AT.

More Information

• For more information, see “Team Foundation Server Proxy and Source Control”
at http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx

http://www.microsoft.com/downloads/details.aspx?FamilyId=3F21144A-4E98-4CE0-830F-D1F3E8AC9D67&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=3F21144A-4E98-4CE0-830F-D1F3E8AC9D67&displaylang=en
http://blogs.msdn.com/buckh/archive/2005/11/16/493401.aspx
http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-US&EventID=1032291120&CountryCode=US
http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-US&EventID=1032291120&CountryCode=US
http://msdn2.microsoft.com/en-us/library/ms252490(VS.80).aspx

How do I optimize version control proxy performance?
Consider the following approaches for optimizing proxy performance:
• Make sure caching is enabled and monitor the performance of your cache. Monitor

the performance counters (installed by default) and event logs (for errors/warnings)
on your proxy server on a periodic basis, to see how your proxy is performing. Note
that TFS proxy saves cache performance statistics to an XML file called
ProxyStatistics.xml and you can change the interval for saving these statistics. The
ProxyStatistics.xml file is located in the App_Data folder in the proxy installation
directory.

• Run a scheduled task to retrieve the latest files on a periodic basis to the proxy server.
This helps to ensure that the latest version of the files are available in the proxy cache
and to ensure that subsequent client requests for these files result in a cache hit.

• If you know that large files are going to be downloaded over a low bandwidth (<
3Mbps) network, then set the executionTimeout configuration to an appropriate
value in Web.config. The default value is one hour <httpRuntime
executionTimeout="3600"/>.

More Information

• For more information about examining TFS proxy performance, see
http://msdn2.microsoft.com/en-us/library/ms252455(VS.80).aspx

Migration
• How is TFS version control different than Visual Source Safe?
• How is the checkout model different from Visual SourceSafe?
• How should I migrate my source from VSS to TFS?
• How should I migrate my source from other version control systems?

How is Team Foundation Server Version Control different than
Visual SourceSafe?
Visual Source Safe is targeted at individual developers and small teams. Team
Foundation Server Version Control is designed for professional developers and very large
teams, with up to 2,500 users per server. Other major improvements with Team
Foundation Server Version control include deep integration with Visual Studio 2005, and
distributed team support supporting efficient file access over wide area networks. The
major differences between the two systems include the following:

• Code Churn. Visual SourceSafe has no features that support code churn metrics.
Team Foundation Server Version Control gives you code churn metrics for every
file that you check into the data warehouse, and you can slice the data in any way
that you'd like.

• Check Out. Visual SourceSafe always get the latest file or the pinned file from
the database and overwrites your local version. Team Foundation Server Version
Control makes your workspace version of the file writable, but does not overwrite
your version with a version from the database.

• File Locking. Visual SourceSafe automatically applies an exclusive lock to a file
when you check it out. By default, Team Foundation Server Version Control
allows multiple developers to check out a file concurrently. Conflicts when they
do occur can usually be automatically resolved.

• Branching. Visual SourceSafe uses a pin-and-share branching method. Pinning is
not supported in Team Foundation Server Version Control. Team Foundation
Server Version Control uses path-space branching. This makes it easier to
maintain old versions of your software, because it's easy to merge changes from
one branch to another or make changes in two branches at once.

• Sharing. Team Foundation Server Version Control does not support sharing. The
migration of a shared file results in copying the file to the destination folder.

• Workflow Integration. Visual SourceSafe is a standalone version control
system. Team Foundation Server Version Control is integrated with work item
tracking and Team Foundation Server reporting.

More Information

• To learn more about the differences between Visual SourceSafe and Team
Foundation Server Version Control, see Visual Source Safe vs. Team Foundation
Server: http://msmvps.com/blogs/vstsblog/archive/2005/07/02/56401.aspx

http://msmvps.com/blogs/vstsblog/archive/2005/07/02/56401.aspx

How is the checkout model different from Visual SourceSafe?
When you checkout from Team Foundation Server Version Control the file you check
out is marked writable in your workspace, but is not synchronized with the database
server. If you want to get the latest version from the database server you need to first use
the get command. In contrast, a Visual Source Safe check-out operation gets the file from
the database server and marks it writable in your workspace.

Visual SourceSafe uses exclusive checkout by default, Team Foundation Server uses
shared checkout by default. Shared checkout enables multiple developers to make
changes to a file at the same time. Unlike in Visual SourceSafe, most conflicts in Team
Foundation Server can be resolved automatically.

More Information

• For differences between Visual SourceSafe checkout and Team Foundation
Server Version Control checkout, see Team Foundation vs. SourceSafe |
Checking Out: http://blogs.msdn.com/korbyp/archive/2004/07/28/199720.aspx

How should I migrate my source from VSS to TFS?
Team Foundation Server ships with a VSS converter which allows you to migrate files,
folders, version history, labels, and user information from a Visual SourceSafe database
to Team Foundation Server Version Control.

The converter does have some limitations that are important to understand, for instance:

• Historical information about file sharing is not preserved. Team Foundation
Server does not support sharing. The migration of a shared file results in copying
the file to the destination folder.

• Historical information about branching is not preserved.
• Team Foundation Server does not support pinning. Pinned files are migrated by

creating two labels.
• Time stamps associated with actions are not preserved during migration.

More Information

• For more information on how to prepare for migration, see:
http://msdn2.microsoft.com/en-us/library/ms181246(en-us,vs.80).aspx

• For more information on how to perform the migration, see:
http://msdn2.microsoft.com/en-us/library/ms181247(VS.80).aspx

• For more information on the limitations of the Visual SourceSafe converter, see:
http://msdn2.microsoft.com/en-us/library/ms252491(VS.80).aspx

• For more information about the VSS Analyze tool, see
http://msdn2.microsoft.com/en-us/library/ysxsfw4x.aspx.

• For more information about the VSSConverter migrate command, see
http://msdn2.microsoft.com/en-us/library/ms400685(VS.80).aspx

http://blogs.msdn.com/korbyp/archive/2004/07/28/199720.aspx
http://msdn2.microsoft.com/en-us/library/ms181246(en-us,vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181247(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252491(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ysxsfw4x.aspx
http://msdn2.microsoft.com/en-us/library/ms400685(VS.80).aspx

How should I migrate my source from other version control
systems?
You can manually export files from the version control system you're migrating from and
then import them into Team Foundation Server Version Control. If you would like to
preserve file history or other attributes from the version control system you're migrating
from, you can use the Team Foundation Server Version Control object model to write
your own migration tool.

Microsoft is currently working on a ClearCase converter, when it is ready it will be
announced on the TFS Migration blog: http://blogs.msdn.com/tfs_migration

Component software has created a converter that is compatible with GNU RCS, CS-RCS,
GNU CVS, Subversion (SVN) and Visual SourceSafe (VSS)

More Information

• You can download the Visual Studio Team Foundation Server SDK from
http://go.microsoft.com/fwlink/?linkid=68586

• To learn more about Team Foundation Version Control extensibility, see
“Walkthru:The Version Control Object Model”: http://msdn2.microsoft.com/en-
us/library/bb187335(VS.80).aspx

• For more information on the component software converter, see:
http://www.componentsoftware.com/
Products/Converter/

http://go.microsoft.com/fwlink/?linkid=68586
http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb187335(VS.80).aspx
http://www.componentsoftware.com/%0bProducts/Converter/
http://www.componentsoftware.com/%0bProducts/Converter/

Project/Workspace Management
• How should I organize my team projects?
• How should I manage dependencies between projects?
• What's a workspace?
• How do I use workspaces to isolate a developer?
• What are the proven practices for workspace mapping?
• What are the proven practices for managing shared components and code?
• How can I merge two team projects together?
• When should I create a new Team Project versus create a new Branch?
• How should I manage source code that is shared across multiple projects?
• How should I manage binaries that are shared across multiple projects?
• How should I organize my source tree?

How should I manage my team projects?
Team projects are intended to represent the largest unit of work possible in your
organization. Most often this will be a product.

Consider one of the following strategies for managing team projects:

• Create one project per application
• Create one project per release

One project per application
If you want to carry forward not only source code but work items and other Team
Foundation Server assets between releases, consider using one project per application.
When you use a single project for multiple versions of the application, all of the Team
Foundation Server assets are carried forward automatically for you for the next release.
When you're ready to release a new version of your application you can create a branch
within the project to represent the release and isolate that code.

The following are reasons not to use one project per application:

• Releases in parallel are forced to share work items schema, check in policies, and
process guidance.

• Reporting is harder since reports default to the entire project, you must add
filtering by release.

• If you have hundreds of applications, each in its own project, you’ll hit Team
Foundation Server performance and scale limits.

• You will accumulate ‘baggage’ over multiple releases. Easiest way to clean
house is to create a new project and branch code you want to carry forward into
that project

One project per release
If you want each release to start fresh without carrying forward work items and other
Team Foundation Server assets, consider using one project per release. When you use a

new project for each release you can modify work item schema, workflow, check-in
policies, and other assets without impacting the old release. This can be especially useful
if the old release will be maintained by a separate team such as a sustained engineering
team who may have a different process and workflow than your main development team.

The following are reasons not to use one project per release:

• While it is very easy to move the source code from one project to another, it is
difficult to move work items and other TFS assets from one project to another.
Work items can only be copied one at a time to another project, if you want to
copy sets of work items you’ll need to write your own utility.

• If you have hundreds of applications and releases, each in its own project, you’ll
hit Team Foundation Server performance and scale limits.

Keep the following considerations in mind when choosing your strategy:

• Pick a structure you can live with, restructuring existing team projects is difficult.
• Source can be easily shared amongst team projects:

o Branch source from one project to another
o Map source from another project into your workspace

• Team Foundation Serveer can scale to ~500 projects using MSF Agile process or
250 projects using MSF CMMI process. If you create your own or customize an
existing process keep in mind that work item schema has the largest impact on
server scalability. A complex schema will result in a server capable of supporting
fewer projects.

More Information

• For more information on using team projects, see “When to use Team Projects”:
http://blogs.msdn.com/ericlee/archive/2006/08/09/when-to-use-team-
projects.aspx

How should I manage dependencies between projects?
If you need to reference an external assembly that is not built as part of your Visual
Studio solution such as a third party assembly for which you only have the binary DLL,
you have three choices:

• You can store the external assembly as a binary resource as part of your project. This

works well if you plan to maintain the dependency for other projects who may want
to reference it, or you are the only project who relies upon this dependency.

• You can reference an assembly on your build server by using either a virtual drive
letter or Universal Naming Convention (UNC) path.

• You can store the set of external assemblies in a folder in a shared team project. This
approach works well if there are many projects that wish to reference this shared
dependency and your project is not the clear owner for it.

o If you wish to receive updates to the binary instantly upon it being changed
you can create a workspace mapping for this team project to your local

http://blogs.msdn.com/ericlee/archive/2006/08/09/when-to-use-team-projects.aspx
http://blogs.msdn.com/ericlee/archive/2006/08/09/when-to-use-team-projects.aspx

computer and you can set a file reference to the assembly within your local
file structure.

o If you wish to control the integration schedule for this dependency you can
create a branch from the shared project into your project and then merge
whenever you are ready to pick up changes.

In general you should avoid dependencies that cross team projects and try to have all the
related/dependent solutions/projects under same team project. This reduces the need for
build script customization. If you have a dependency, use project references to define it.
You should avoid file references as they are more difficult to manage. Note that project to
project references are supported within a solution. Also a project file (csproj, vjsproj,
vcproj, vbproj, etc) can be included by multiple solutions (sln files). Therefore, a project
can be shared by multiple separate solutions.

More Information

• For more information on project references, see “Project References”:
http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on workspaces, see: http://msdn2.microsoft.com/en-
us/library/ms181383(VS.80).aspx

What's a workspace?
A workspace is a client-side copy of the files and folders in the TFS version control
server. Local pending changes are isolated within your workspace until you check them
into the server as an atomic unit (referred to as a changeset). A single workspace can
contain references to multiple team projects. You can use multiple workspaces to isolate
files or versions for your use only. Note that workspaces are per machine, per user
account. Therefore, you can have different workspace definitions for each computer you
use. Also, you can have multiple workspaces on a single computer by using multiple user
accounts to log onto the computer.

More Information

• For more information on workspaces, see: http://msdn2.microsoft.com/en-
us/library/ms181383(VS.80).aspx

How do I use workspaces to isolate the work of a developer?
As a developer you can create two workspaces, one containing references to files and
folders being worked on by the rest of the team, another containing files and folders that
you want to isolate. You might want to isolate these files in order to evolve specific files
in parallel with work that is happening elsewhere. For instance, this can be used to work
on risky pending changes, or to conduct a code review.

More Information

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx

• For more information about workspaces, see: http://msdn2.microsoft.com/en-
us/library/ms181383(VS.80).aspx

What are proven practices for workspace mapping?
Workspace mapping is the means by which you map files and folders on the server to a
location on your local hard drive.

Consider the following practices for creating workspace mappings:

• Create mappings at the team project root level. For new team projects, map
your team project root ($/MyTeamProject) to a folder with the same name on
your local drive for example C:\TeamProjects. Because mappings are recursive,
your entire local folder structure is created automatically and will be exactly the
same as the structure in source control.

• On shared computers, use a unique local folder path. Two users of a single
computer cannot share the same workspace mapping. For example, you and a
colleague cannot map the same team project ($/MyTeamProject) to the same
folder on the local computer. Instead, create mappings beneath My Documents
(although this leads to long location paths) or establish a team folder naming
convention on the local computer (e.g. C:\TeamProjects\User1,
C:\TeampProjects\User2 etc).

• You may not need the entire tree. To improve performance and reduce disk size
requirements only map the files you need for your development project. In
general you will only need the files and projects associated with the solution you
will be working on.

• Avoid using workspace mapping to support cross project dependencies. In
general you should avoid dependencies that cross team projects and try to have all
the related/dependent solutions/projects under same team project. This reduces the
need for build script customization. If you have a dependency, use project
references to define it or branch the dependency from a shared project into your
project. You should avoid file references as they are more difficult to manage.
The exception is when the dependent project is developed in parallel and you
need real-time changes. In this case, you can consider the using workspace
mapping. You may still consider branching to create a buffer of isolation, if the
dependent code is causing too many breaking changes

More Information

• For more information on creating a workspace, see “How to: Create a
Workspace”: http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

• For more information on editing a workspace, see “How to: Edit a Workspace”:
http://msdn2.microsoft.com/en-us/library/ms245466(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms245466(VS.80).aspx

When should I create a new Team Project versus create a new
Branch?
Create a branch if you want to isolate the code that developers are working on within a
project but want to shares all other TFS assets such as work items, process guidance, and
reports.

Create a new Team Project if you want to use different TFS assets such as work items,
process guidance, and reports. Create a new Team Project if you want to carry forward
your code but don’t want to carry forward any other TFS assets.

More Information

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on adding a new project, see “How to: Add a Project or
Solution to Source Control”: http://msdn2.microsoft.com/en-
us/library/ms181373(VS.80).aspx

How should I manage source code that is shared across multiple
projects?
Managing shared source involves two decision points.

1. Where do you want to store the source?
2. How do you want your team to access the shared source?

Options for storing the source:

• If the shared source is clearly owned by a particular team, store it in their team
project.

• If the shared source has no clear ownership, then create a team project specifically
for the shared code.

Options for using the source in another project

• If you need to stay in sync with shared code at all times, map the source from
shared location into local workspace on client machines.

• If you only need to stay in sync periodically, branch from the shared location into
the consuming team project. Every time you perform a merge from shared to
consuming project you will pick up latest source.

Whether you use workspace mapping or branching, use naming conventions that make it
clear where the shared source location is in your project, for instance:

• Main - container for all assets you need to ship the product
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests

http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181373(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181373(VS.80).aspx

 Lib - container for binary dependencies
o Docs - container for documentation that will ship with the product
o Installer - container for installer source code and binaries
o Builds - container for team build scripts
o Tests - container for test team test cases

More Information

• For more information on project references, see “Project References”:
http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on workspaces, see: http://msdn2.microsoft.com/en-
us/library/ms181383(VS.80).aspx

How should I manage binaries that are shared across multiple
projects?
Managing shared binaries is similar to managing shared source, you must decide where
you want to store the binaries and how you want your team to access the binaries.

Options for storing the binaries:

• If the shared binaries are clearly owned by a particular team, store it in their team
project.

• If the shared binaries have no clear ownership, then create a team project
specifically for the shared binaries.

Options for using the binaries in another project

• Usually shared binaries are updated only periodically. If this is the case, branch
from the shared location into the consuming team project. When the binaries
change, you can execute a merge to get the latest version.

• If you need to stay in sync with the shared binaries at all times, map the source
from the shared location into a local workspace on client machines.

Whether you use workspace mapping or branching, use naming conventions that make it
clear where the shared binary location is in your project, for instance:

• Main - container for all assets you need to ship the product
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests
 Lib - container for binary dependencies

o Docs - container for documentation that will ship with the product
o Installer - container for installer source code and binaries
o Builds - container for team build scripts
o Tests - container for test team test cases

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx

More Information

• For more information on project references, see “Project References”:
http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

• For more information on branching, see “How to: Branch Files and Folders”:
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

• For more information on workspaces, see: http://msdn2.microsoft.com/en-
us/library/ms181383(VS.80).aspx

How should I organize my source tree?
Your source tree structure consists of a combination of folder structure, file structure, and
branch structure. Within your main branch the following folder and file structure has
been proven to work for teams of various sizes:

• Main - container for all assets you need to ship the product
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests
 Lib - container for binary dependencies

o Docs - container for documentation that will ship with the product
o Installer - container for installer source code and binaries
o Builds - container for team build scripts
o Tests - container for test team test cases

Any branches that you create off of main will copy this folder and file structure into the
new branch. For example:

• Development – Development branch
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests
 Lib - container for binary dependencies

• Main – Integration branch
o Source - container for everything you need to build

 Code - container for source code
 Shared Code – container for source code that is shared from other

projects
 Unit Tests - container for unit tests
 Lib - container for binary dependencies

o Docs - container for documentation that will ship with the product
o Installer - container for installer source code and binaries
o Builds - container for team build scripts
o Tests - container for test team test cases

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx

More Information

• For more information on creating a workspace, see “How to: Create a
Workspace”: http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

Shelving
• What is shelving?
• What is a shelveset?
• When would I typically use shelving?
• How do I use shelving to back up my work?
• Why would I want to unshelve a shelveset?

What is shelving?
The process of shelving a change or set of changes (also known as creating a shelveset),
allows you to store pending changes under source control, without having to check them
in. This means that you benefit from having the files on the (backed up) server but ensure
that the potentially incomplete work on those files does not impact and break your regular
builds.

More Information

• For more information on shelving pending changes, see “How to: Shelve and
Unshelve Pending Changes”: http://msdn2.microsoft.com/en-
us/library/ms181404(VS.80).aspx

What is a shelveset?
A shelveset is a set of files that are saved, but are not yet ready to be committed to source
control. Files can be shelved in order to save pending changes to the workspace, or to
share with other team members for feedback. They can also be used to pass off partially
completed work.

More Information

• For more information on shelving pending changes, see “How to: Shelve and
Unshelve Pending Changes”: http://msdn2.microsoft.com/en-
us/library/ms181404(VS.80).aspx

When would I typically use shelving?
There are a number of common scenarios for using shelving:
• You are mid-way through making changes to a set of source code, when new higher

priority work is allocated (for example an emergency bug fix is required). At this
point you need to go back to a stable version of the code but you don't want to lose
your changes. Before doing so you can shelve your code and easily retrieve it later
on.

• You have not completed work at the end of the day but want to ensure that your
current work is backed up on the server. By shelving your current changes, the
changes are applied to the TFS and can be retrieved by you (or others) the day.

http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx

• You want to discuss or review your work-in-progress code with a remote team
member. Rather than emailing the code to them, you can shelve the code and then
have your remote colleague retrieve the files from the shelf.

• You want to pass partially finished work to another developer for completion.

More Information

• For more information on shelving pending changes, see “How to: Shelve and
Unshelve Pending Changes”: http://msdn2.microsoft.com/en-
us/library/ms181404(VS.80).aspx

How do I use shelving to back up my work?
At the end of the day, if your work on one or more source files is not complete you can
shelve your code. This ensures that the source is uploaded to the server without checking
in partially completed work.

More Information

• For more information on shelving pending changes, see “How to: Shelve and
Unshelve Pending Changes”: http://msdn2.microsoft.com/en-
us/library/ms181404(VS.80).aspx

Why would I want to unshelve a shelveset?
You might unshelve a shelveset to:
• Resume work on a set of files that you backed up previously by using a shelveset
• Integrate shelved pending changes into your work going forward.
• To review someone else's code
• Pick up another developer’s partially completed work.

More Information

• For more information on unshelving pending changes, see “How to: Shelve and
Unshelve Pending Changes”: http://msdn2.microsoft.com/en-
us/library/ms181404(VS.80).aspx

Additional Resources
• Visual Studio Team System Guidance Project:

http://www.codeplex.com/VSTSGuidance

http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181404(VS.80).aspx
http://www.codeplex.com/VSTSGuidance

How To: Add a New Developer To Your Project in Visual Studio
Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

How to add a new developer to your project
When you add a new developer to a project you need to grant the developer appropriate
permissions to access your team foundation project and the associated Sharepoint project site.
The new developer's account must also have sufficient permissions with SQL Server Reporting
Services to be able to view reports such as those presented by the team site portal.

To grant access to the team project:
1. Logon to Visual Studio with an account that is a member of the Team Foundation
Administrators application group.
2. Add the required project to Team Explorer (if it is not already listed)
3. Right‐click the team project, point to Team Project Settings and click Group
Membership.
4. Select Project\Contributors and click Properties and then add the new developer's
account to this group.

Note that membership of the contributors group provides the typical set of permissions that a
developer requires including the ability to add, modify and delete items within the team project
and perform builds.

To grant access to the Sharepoint project site:
1. Access the team project site with an account that is a member of the SharePoint
Administrator site group. The project site for a project called YourProject is located by default
at http://server/sites/YourProject/default.aspx
2. Click Site Settings.
3. Click Manage Users beneath the Administration title.
4. Click Add Users.
5. Enter the account name in the form domain\useraccount of the new developer's
account, select Contributor and then click Next.
6. Enter the developer's email address, and optionally type a message to welcome them to
the site.
7. Click Finish.

Note that membership of the Contributors group allows the developer to view and add content
to existing document libraries and lists. Membership of the Reader group, providing read only
access to the site may be sufficient depending on the needs of the new developer.

To grant access to SQL Server Reporting Services
1. Logon to SQL Server Reporting Services administration Web site using an administrator
account. The site is located at http://server/reports.
2. Click your team project name.
3. Click the Properties tab.
4. Click the Security tab.
5. Click New Role Assignment.
6. Enter your developer's Windows account name, select Browser and then click OK.

Note that membership of the Browser group enables the developer to view and subscribe to
reports.

More Information

Security Groups
When adding a new dev to the team you need to add the dev's account to members of the
approprate security groups to provide access to 3 distinct areas:

‐ The TFS Team Project
‐ The SHarePoint portal project site
‐ SQL Server Reporting Services

You can do this manually ‐ by using the admin features of each tool OR you can use the TFS
Administration Tool (currently at beta 1) available for download here:

TFS Server Level

At the TFS Server level, TFS defines three TFS application groups (not AD groups):

SERVER\Service Accounts ‐ Contains TFS service accounts. By default, members can:
 ‐ Administer shelved changes
 ‐ Administer warehouse
 ‐ Administer workspaces
 ‐ Create workspaces
 ‐ Trigger events

 ‐ View system synchronization information

 Default Members

 ‐ SERVER\TFSSERVICE

SERVER\Team Foundation Administrators ‐ Members can perform admin operations on the
server. By default, members can:
 ‐ Administer shelved changes
 ‐ Administer warehouse
 ‐ Administer workspaces
 ‐ Alter trace settings
 ‐ Create a workspace
 ‐ Create new projects
 ‐ Edit server level information
 ‐ Manage process template
 ‐ Trigger events
 ‐ View server level information
 ‐ View system synchronization information

 Default Members

 ‐ SERVER\Service Accounts
 ‐ Builtin\Administrator
 ‐ Builtin\Administrators

SERVER\Team Foundation Valid Users ‐ Contains all users and groups that can access the server.
By default, members can:
 ‐ Create a workspace
 ‐ View server level information

 Default Members

 ‐ Project\Build Services
 ‐ Project\Contributors
 ‐ Project\Project Administrators
 ‐ Project\Readers

SERVER\Team Foundation Licensed Users ‐ Users licensed to use the workgroup edition of TFS
 ‐ No permissions by default (??)

 Default Members
 ‐ Builtin\Administrator

Team Project Level
At the team project level, TFS defines the following application groups (not AD groups)

TeamProject\BuildServices ‐ build service permissions (for service accounts)
 ‐ Edit build quality
 ‐ Publish test results
 ‐ Start a build
 ‐ View project level information
 ‐ Write to build operational store

 Default Members
 ‐ None

TeamProject\Contributors ‐ can add modify and delete items in a team project
 ‐ Publish test results
 ‐ Start a build
 ‐ View project level information

 Default Members ‐ None

TeamProject\Project Administrators ‐ can perform all operations in a team project
 ‐ Administer a build
 ‐ Delete this project
 ‐ Edit build quality
 ‐ Edit project level information
 ‐ Publish test results
 ‐ Start a build
 ‐ View project level information
 ‐ Write to build operational store

 Default Members
 ‐ Builtin\Administrator

TeamProject\Readers ‐ read access to the team project
 ‐ View project level information

 Default Members
 ‐ None

How To: Automatically Run Code Analysis with Team
Build in Visual Studio Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To shows you how to turn code analysis on for your team build. This will
automatically run code analysis as part of your team build and report the results of the
analysis in the build results.

Contents
• Objective
• Overview
• Summary of Steps
• Before You Begin
• Step 1 – Test the Build
• Step 2 – Turn Code Analysis on for the Build
• Step 3 – Test Code Analysis
• Additional Resources

Objective
• Learn how to run code analysis as part of the build, to validate code quality.

Overview
Team Build allows you to define build types for your project that enable a build server to
compile your application and make it available on a network share. You can turn code
analysis on for the team build so that each build automatically performs code analysis and
reports the results to the build results report page. This How To walks you through the
process of configuring Team Build to include code analysis as a build step.

Summary of Steps
• Step 1 – Test the Build
• Step 2 – Turn Code Analysis on for the Build
• Step 3 – Test Code Analysis

Before You Begin
Before you can turn code analysis on for team build, you must ensure you have the
following pre-requisites in place:
• Your Team Foundation user ID must have permission to administer a build. Ask you

administrator if you are unsure of your user’s allowed permissions.

• A team build must already exist for your project. You can check this by looking at
Team Build in the Visual Studio Team Explorer.

Step 1 – Test the Build
Start by testing the team build to make sure there are no problems before you turn code
analysis on. You can do this by taking the following steps:

1. Open Team Explorer in Visual Studio
2. Expand the node for your team project
3. Expand the Team Builds node
4. Right Click an existing team build and select Build Team Project

Ensure the build has completed successfully. If there are build breaks or the build is not
able to complete, fix these errors before moving to the next step.

Step 2 – Turn Code Analysis on for the Build
Once you have verified that the build is working properly, you can turn code analysis on.
Use the following steps to turn code analysis on:

1. Open Source Control Explorer.
2. Expand your team project folder in Source Control Explorer.
3. Expand the TeamBuildTypes folder.
4. Select the team build folder for which you want to turn on code analysis.
5. Check out TFSBuild.proj file from source control. You may need to perform a

Get Latest Version on the folder first.
6. Double click TFSBuild.Proj from Source Control Explorer to open it.
7. If you want all projects to run code analysis, regardless of project settings, change

the <RunCodeAnalysis> tag to Always.
8. If you want to run code analysis on each project based on project settings, change

the <RunCodeAnalysis> tag to Default.
9. If you are using per-project settings and want to turn code analysis on for a

project:
a. Open the solution in Visual Studio.
b. Right click on the project in Solution Explorer.
c. Select Properties.
d. Click on Code Analysis.
e. Check, Enable Code Analysis.
f. Check out the .csproj file for the project from source control.
g. Save the file by clicking the save button in toolbar while properties

window is displayed.
h. Check the .csproj file for the project back into source control.

Step 3 – Test Code Analysis
Once you have turn code analysis on for a team build, you can test to make sure it is
working properly. Use the following steps to test code analysis for your build:

1. Right click the build type in Team Explorer and click Build Team Project.
2. When the build has completed, click on the link to the build log

3. At the end of the build log you should see some code analysis warnings. The
warning ids will start with 'CA', such as:

• MSBUILD : warning : CA2209 : Microsoft.Usage : No valid permission
requests were found for assembly 'HelloWorldTest'. You should always
specify the minimum security permissions using
SecurityAction.RequestMinimum.

• MSBUILD : warning : CA2210 : Microsoft.Design : Sign
'HelloWorldTest' with a strong name key.

• MSBUILD : warning : CA1014 : Microsoft.Design : 'HelloWorldTest'
should be marked with CLSCompliantAttribute and its value should be
true.

Additional Resources
• For more information on code analysis tools, see “Guidelines for Using Code

Analysis Tools”: http://msdn2.microsoft.com/en-
us/library/ms182023(VS.80).aspx

• For more information on team build, see “Overview of Team Foundation Build”:
http://msdn2.microsoft.com/en-us/library/ms181710(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms182023(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms182023(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181710(VS.80).aspx

How To: Create a Custom Report for Visual Studio Team
Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To describes how to create a new custom report and then publish it to the team
reporting portal in Team Foundation Server.

Contents
• Objectives
• Overview
• Summary of Steps
• Before You Begin
• Step 1 – Create a new Reporting Project
• Step 2 – Create the data sources
• Step 3 – Create a new report in your project
• Step 4 – Modify the report
• Step 5 – Deploy the report to your Team Foundation Server
• Step 6 – Test the report
• Additional Resources

Objectives
• Create a reporting project in Visual Studio
• Create a new custom report in the reporting project
• Publish the new report to the report server

Overview
The reports that ship with VSTS are SQL Server Reporting Services reports. You can amend
these reports or create your own custom reports by using the SQL Server 2005 Reporting
Services Designer inside Visual Studio (Business Intelligence Development Studio), which ships
with the SQL Server 2005 client tools. To create a custom report, you create a Report Project in
Visual Studio, and create data sources to connect to the TFS relational database and OLAP
database.

Summary of Steps
• Step 1 – Create a new Reporting Project
• Step 2 – Create the data sources
• Step 3 – Create a new report in your project
• Step 4 – Modify the report

• Step 5 – Deploy the report to your Team Foundation Server
• Step 6 – Test the report

Before You Begin
Before you can customize a report for Team Foundation Server, you must ensure you have the
following pre-requisites in place:

• You must have Business Intelligence Development Studio installed on the machine you
will be using to customize the report. To test if it is installed, check Visual Studio to see
if you have Business Intelligence Project type when you create a new project.

• Your user account must be a member of the Microsoft Analysis Server
TfsWarehouseDataReaders security role on the data-tier server.

• Your user account must have administrator rights to the TFSWarehouse database on the
data tier.

• Your user account must be a member of the SQL Server Reporting Services Publisher
role on the application-tier server.

Step 1 - Create a new reporting project
Create a new reporting project so that you can add a new report to the project and customize it.
Use the following steps to create a new reporting project in Visual Studio:

1. Click File, then click New, then click Project.
2. Select the Business Intelligence Project type.
3. Select the Report Server Project template.
4. Set your project’s Name and Location and then click ok.

Step 2 - Create the data sources
In order to edit and publish the customized report you need to add data sources for the Team
Foundation Server data warehouse and OLAP cube. Once these data sources are added to the
Visual Studio project the report can pull data from the server.

Create the warehouse data source:

1. In the Visual Studio Solution Explorer, right click Shared Data Sources and click Add
New Data Source.

2. Enter TfsReportDS into the Name text box on the General tab.
3. Select Microsoft SQL Server from the Type combo box.
4. Click on the Edit… button.
5. Fill in your data tier server name.
6. Select the the database TFSWarehouse.
7. Click the OK button twice to add the data source.

Create the OLAP data source:

1. In Solution Explorer, right click Shared Data Sources and click Add New Data
Source.

2. Enter TfsOlapReportDS into the Name text box on the General tab.
3. Select Microsoft SQL Server Analysis Services from the Type combo box.
4. Click on the Edit… button.

5. Fill in your data tier server name.
6. Select the database TFSWarehouse.
7. Click the OK button twice to add the data source.

Step 3 - Create a new report in your project
Now that the data sources have been added to your project you can add a new report. Use the
following steps to add a new report to your project and customize it:

1. In Solution Explorer, right click Reports and select Add->New Item...
2. Select Report template.
3. Name the report and click ok

Step 4 – Modify the report
Once you’ve added a report to the project you can modify it:

1. If the Report Designer doesn't open automatically, open the report for modification by
double clicking it in the Solution Explorer.

2. Select the Dataset drop down and choose <New Dataset...>
3. Name the dataset, example TestDataSet.
4. Choose TFSOlapReportDS (shared).
5. Click OK.
6. Click the ... button next to Build, just below the Dataset drop down and select Team

System.

You are now set up to modify report by dragging measures and dimensions from the Dataset
tree into the Query Pane and Filter Pane. You can modify report layout by clicking on the
Layout tab. You can view a preview of your report by clicking on the Preview tab.

Step 5 - Deploy the report to your Team Foundation Server
After you’ve made modifications to the report, you can deploy it to your team project’s reporting
portal by using the following steps:

1. Right click on the report project in Solution Explorer and click Properties.
2. Ensure OverwriteDataSources is set to false.
3. Modify TargetDataSourceFolder to your team project name. Example:

TargetDataSourceFolder = TestProject.
4. Modify TargetReportFolder to your team project name. Example:

TargetDataSourceFolder = TestProject.
5. Modify TargetDataSourceFolder to http://<data-tier servername>/reportserver.

Example: TargetDataSourceFolder = http://tfsrtm/reportserver.
6. Click OK.
7. Right click on the rdl file in Solution Explorer and click Deploy.
8. Watch the Output Pane for successful completion.

Step 6 – Test the report
After you’ve published the report to your team project’s report server you can test it to make sure
it was successfully deployed:

1. Right click on your team project and select Show Project Portal.
2. Click Reports in the Quick Launch bar on the left hand side of the portal web site.
3. Select the report you created.
4. Verify the report looks as you expected.

Additional Resources
• For more tutorials explaining how to work with reporting projects, see "Reporting

Services Tutorials": http://msdn2.microsoft.com/en-us/library/ms170246.aspx
• For the MSDN article on editing reports, see "How to: Edit Reports in Report Designer":

http://msdn2.microsoft.com/en-us/library/ms244655(VS.80).aspx
• For more information on security roles in the data-tier, see "Securing Access Through

Analysis Services": http://msdn2.microsoft.com/en-us/library/ms174839.aspx
• For more information on security roles in the application-tier, see "Securing Reporting

Services": http://msdn2.microsoft.com/en-us/library/ms157198.aspx

http://msdn2.microsoft.com/en-us/library/ms170246.aspx
http://msdn2.microsoft.com/en-us/library/ms244655(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms174839.aspx
http://msdn2.microsoft.com/en-us/library/ms157198.aspx

How To: Create a Risk Over Time Report for Visual Studio Team
Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To describes how to create a new report that shows a trend‐line of Risk work items
over time and then publish it to the team reporting portal in Team Foundation Server.

Contents
• Objectives
• Overview
• Summary of Steps
• Before You Begin
• Step 1 – Create a new Reporting Project
• Step 2 – Create the data sources
• Step 3 – Create a new report in your project
• Step 4 – Modify the report
• Step 5 – Deploy the report to your Team Foundation Server
• Step 6 – Test the report
• Additional Resources

Objectives
• Create a reporting project in Visual Studio
• Create a new Risk Over Time report in the reporting project
• Publish the Risk Over Time report to the report server

Overview
The reports that ship with VSTS are SQL Server Reporting Services reports. You can amend
these reports or create your own custom reports by using the SQL Server 2005 Reporting
Services Designer inside Visual Studio (Business Intelligence Development Studio), which ships
with the SQL Server 2005 client tools. To create a custom report, you create a Report Project in
Visual Studio, and create data sources to connect to the TFS relational database and OLAP
database. In this How To we create a simple report from scratch - the Risk Over Time report.
This report tells us how many Risk work items there are over time.

Summary of Steps
• Step 1 – Create a new Reporting Project
• Step 2 – Create the data sources

• Step 3 – Create a new report in your project
• Step 4 – Modify the report
• Step 5 – Deploy the report to your Team Foundation Server
• Step 6 – Test the report

Before You Begin
Before you can customize a report for Team Foundation Server, you must ensure you have the
following pre-requisites in place:

• You must have Business Intelligence Development Studio installed on the machine you
will be using to customize the report. To test if it is installed, check Visual Studio to see
if you have Business Intelligence Project type when you create a new project.

• Your user account must be a member of the Microsoft Analysis Server
TfsWarehouseDataReaders security role on the data-tier server.

• Your user account must have administrator rights to the TFSWarehouse database on the
data tier.

• Your user account must be a member of the SQL Server Reporting Services Publisher
role on the application-tier server.

Step 1 - Create a new reporting project
Create a new reporting project so that you can add a new report to the project and customize it.
Use the following steps to create a new reporting project in Visual Studio:

1. Click File, then click New, then click Project.
2. Select the Business Intelligence Project type.
3. Select the Report Server Project template.
4. Set your project’s Name and Location and then click ok.

Step 2 - Create the data sources
In order to edit and publish the customized report you need to add data sources for the Team
Foundation Server data warehouse and OLAP cube. Once these data sources are added to the
Visual Studio project the report can pull data from the server.

Create the warehouse data source:

1. In the Visual Studio Solution Explorer, right click Shared Data Sources and click Add
New Data Source.

2. Enter TfsReportDS into the Name text box on the General tab.
3. Select Microsoft SQL Server from the Type combo box.
4. Click on the Edit… button.
5. Fill in your data tier server name.
6. Select the the database TFSWarehouse.
7. Click the OK button twice to add the data source.

Create the OLAP data source:

1. In Solution Explorer, right click Shared Data Sources and click Add New Data
Source.

2. Enter TfsOlapReportDS into the Name text box on the General tab.

3. Select Microsoft SQL Server Analysis Services from the Type combo box.
4. Click on the Edit… button.
5. Fill in your data tier server name.
6. Select the database TFSWarehouse.
7. Click the OK button twice to add the data source.

Step 3 - Create a new report in your project
Now that the data sources have been added to your project you can add a new report. Use the
following steps to add a new report to your project and customize it:

1. In Solution Explorer, right click Reports and select Add->New Item...
2. Select Report template.
3. Name the report and click ok

Step 4 – Modify the report
Once you’ve added a report to the project you can modify it:

1. If the Report Designer doesn't open automatically, open the report for modification by
double clicking it in the Solution Explorer.

2. Select the Dataset drop down and choose <New Dataset...>.
3. Name the dataset, example TestDataSet.
4. Choose TFSOlapReportDS (shared).
5. Click OK.
6. Click the ... button next to Build, just below the Dataset drop down and select Team

System.
7. Expand Measures in the Dataset Tree.
8. Expand Current Work Item in the Dataset Tree.
9. Drag Current Work Item Count into the main query window.
10. Collapse Measures in the Dataset Tree.
11. Scroll down to Team Project and drag it into the Dimensions Grid.
12. In the Dimensions Grid click on the Filter Expression cell and select your team project

name. This filters the results to just your team project.
13. Expand the Work Item dimension in the Dataset Tree.
14. Drag System_WorkItemType from the Dataset Tree into the Dimensions Grid.
15. Drag System_WorkItemType from the Dataset Tree into the main query window, drop

it in front of the work item count column.
16. Click on the Filter Expression cell in the Dimensions Grid and select Risk type. This

filters the results to only risk work item types.
17. Expand the Date dimension in the Dataset Tree.
18. Drag the Date dimension value into the main query window, drop it in front of the work

item type column.
19. Click the Layout tab.
20. Open the Toolbox window.
21. Drag the Chart item from the Toolbox to the layout grid.
22. Adjust the size of the chart to fit.
23. Right click on the chart, select Chart Type‐>Line‐>Smooth Line.

24. Open the Datasets Pane.
25. Expand your data set, for example, TestDataSet.
26. Highlight the graph so that the data, series and category drop targets appear.
27. Drop Current_Work_Item_Count into the Drop Data Fields Here drop target box.
28. Drop Work_Item_Type into the Drop Series Fields Here drop target box.
29. Drop Date into the Drop Category Fields Here drop target box.
30. Right click the graph and select Properties.
31. Enter a title for your graph.
32. Click the Preview tab to view what the report will look like.

Step 5 - Deploy the report to your Team Foundation Server
After you’ve created the Risk Over Time report, you can deploy it to your team project’s
reporting portal by using the following steps:

1. Right click on the report project in Solution Explorer and click Properties.
2. Ensure OverwriteDataSources is set to false.
3. Modify TargetDataSourceFolder to your team project name. Example:

TargetDataSourceFolder = TestProject.
4. Modify TargetReportFolder to your team project name. Example:

TargetDataSourceFolder = TestProject.
5. Modify TargetDataSourceFolder to http://<data-tier servername>/reportserver.

Example: TargetDataSourceFolder = http://tfsrtm/reportserver.
6. Click OK.
7. Right click on the rdl file in Solution Explorer and click Deploy.
8. Watch the Output Pane for successful completion.

Step 6 – Test the report
After you’ve published the report to your team project’s report server you can test it to make sure
it was successfully deployed:

1. Right click on your team project and select Show Project Portal.
2. Click Reports in the Quick Launch bar on the left hand side of the portal web site.
3. Select the report you created.
4. Verify the report looks as you expected.

Additional Resources
• For more tutorials explaining how to work with reporting projects, see "Reporting

Services Tutorials": http://msdn2.microsoft.com/en-us/library/ms170246.aspx
• For the MSDN article on editing reports, see "How to: Edit Reports in Report Designer":

http://msdn2.microsoft.com/en-us/library/ms244655(VS.80).aspx
• For more information on security roles in the data-tier, see "Securing Access Through

Analysis Services": http://msdn2.microsoft.com/en-us/library/ms174839.aspx
• For more information on security roles in the application-tier, see "Securing Reporting

Services": http://msdn2.microsoft.com/en-us/library/ms157198.aspx

http://msdn2.microsoft.com/en-us/library/ms170246.aspx
http://msdn2.microsoft.com/en-us/library/ms244655(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms174839.aspx
http://msdn2.microsoft.com/en-us/library/ms157198.aspx

How To: Step Through Creating a Custom Check-in
Policy for Visual Studio Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To steps you through creating, registering and applying a custom check-in
policy for Team Foundation Server. Check-in polices allow you to run rules whenever a
developer attempts to check-in a source file in order to ensure that the source file and
check-in meet a specified set of criteria. As an example, this How To uses a comment
check-in custom policy to enforce that check-in comments are supplied with all check-ins.
To implement a custom check-in policy you create a class that derives from PolicyBase
and implements IPolicyDefinition and IPolicyEvaluation. You register the policy
assembly in the Windows registry and you apply the policy to your team project.

Contents
• Objectives
• Overview
• Before You Begin
• Summary of Steps
• Step 1. Create and Build a Custom Policy Class.
• Step 2. Register the Custom Policy Class in the Windows Registry
• Step 3. Apply the Custom Policy.
• Step 4. Validate the Custom Policy.
• Additional Considerations

Objectives
• Learn how to create, register and apply custom check-in policies.

Overview
Check-in policies enforce constraints whenever files are checked into source control.
Team Foundation Server provides a number of check-in policies including policies to
check that unit tests have run and been passed, to perform static code analysis to ensure
that code meets coding standards and .NET guidelines, and to check that work items are
associated with check ins. The Team Foundation Power Tool also provides a number of
additional check-in policies. In this How To, you will see how to create, register and
apply a custom policy. The example policy ensures that developers supply check-in
comments whenever they check in a file.

Before You Begin
Note that to create a check in policy you must have the Manipulate security settings
permission set to Allow.

Summary of Steps
• Step 1. Create and build a custom policy class
• Step 2. Register the custom policy in the Windows registry
• Step 3. Apply the custom policy
• Step 4. Validate the custom policy

Step 1. Create and Build a Custom Policy Class
In this step you create a custom policy class by deriving from PolicyBase in the
Microsoft.TeamFoundation.VersionControl.Client namespace. By deriving from this
base class your class implements the IPolicyDefinition and IPolicyEvaluation interfaces.
The example policy code shown below, forces a developer to supply check-in comments
whenever he or she checks in a source file.

1. Use Visual Studio to create a new C# class library project.
2. Add an assembly reference to System.Windows.Forms.dll. You use this assembly to

display message boxes.
3. Add an assembly reference to Microsoft.TeamFoundation.VersionControl.Client.dll.

By default, this is installed in the following folder:
\Program Files\Visual Studio 2005 Team Foundation Server\Tools

4. Replace your skeleton class code implementation with the following source. Note that
the class derives from PolicyBase and is marked as serializable.

using System;
using System.Windows.Forms;
using Microsoft.TeamFoundation.VersionControl.Client;

[Serializable]
public class CheckForCommentsPolicy : PolicyBase
{
 public override string Description
 {
 get { return "Remind users to add meaningful comments to their
checkins"; }
 }

 // This is a string that is stored with the policy definition on the
source
 // control server. If a user does not have the policy plugin installed,
this string
 // is displayed. You can use this to explain to the user how they
should

 // install our the policy plug-in.
 public override string InstallationInstructions
 {
 get { return "To install this policy, read
InstallInstructions.txt."; }
 }

 // This string identifies the type of policy. It is displayed in the
 // policy list when you add a new policy to a Team Project.

 public override string Type
 {
 get { return "Check for Comments Policy"; }
 }

 // This string is a description of the type of policy. It is displayed
 // when you select the policy in the Add Check-in Policy dialog box.
 public override string TypeDescription
 {
 get { return "This policy will prompt the user to decide whether or
not they should be allowed to check in."; }
 }

 // This method is called by the policy framework when you create
 // a new checkin policy or edit an existing checkin policy.
 // You can use this to display a UI specific to this policy type
 // allowing the user to change the parameters of the policy.
 public override bool Edit(IPolicyEditArgs args)
 {
 // Do not need any custom configuration
 return true;
 }

 // This method performs the actual policy evaluation.
 // It is called by the policy framework at various points in time
 // when policy should be evaluated. In this example, the method
 // is invoked when various asyc events occur that may have
 // invalidated the current list of failures.
 public override PolicyFailure[] Evaluate()
 {
 string proposedComment = PendingCheckin.PendingChanges.Comment;
 if (String.IsNullOrEmpty(proposedComment))
 {
 return new PolicyFailure[] {
 new PolicyFailure("Please provide some comments about your
checkin", this) };
 }
 else
 {
 return new PolicyFailure[0];
 }
 }

 // This method is called if the user double-clicks on
 // a policy failure in the UI. In this case a message telling the user
 // to supply some comments is displayed.
 public override void Activate(PolicyFailure failure)
 {
 MessageBox.Show("Please provide comments for your checkin.", "How to
fix your policy failure");
 }

 // This method is called if the user presses F1 when a policy failure
 // is active in the UI. In this example, a message box is displayed.
 public override void DisplayHelp(PolicyFailure failure)
 {
 MessageBox.Show("This policy helps you to remember to add comments
to your checkins.", "Prompt Policy Help");
 }
}

Step 2. Register the Custom Policy in the Windows
Registry
In this step, you add an entry to the Windows registry so that your policy appears in the
Add Check-in Policy dialog box. Note that you must install the policy assembly on any
computer that needs to reference the assembly. This includes the computer of the team
project’s administrator who needs to associate the policy with the team project and on all
of your the team members’ computers where the policy is actually evaluated.

Important: The policy is evaluated on the client when a developer checks in a file.

To register your custom policy class:

1. Start Regedit.exe and locate the following key

HKEY_LOCAL_MACHINE\Software\Microsoft\VisualStudio\8.0\TeamFoundation\
SourceControl\Checkin Policies

 The registered policies are listed in the right hand pane.
2. Right-click in the right-hand pane, point to New and click String Value.
3. Type the name of your custom policy DLL (without the DLL extension);

CheckForCommentsPolicy in the above example.
Important: The new string name must match your DLL filename exactly, without the
DLL extension.

4. Double-click the new string value and set its value to the fully qualified path and
filename to the .dll containing your custom policy.

Step 3. Apply the Custom Policy
In this step you add the custom policy to your team project. This ensures that the policy is
evaluated each time a developer checks in a file to this team project.

To apply the custom policy:

1. In Team Explorer, right-click your team project, point to Team Project Settings

and click Source Control.
2. Click the Check-in Policy tab and then click Add.
3. Select your custom policy Check for Comments Policy and click OK and then OK

again.

The policy is now applied each time a developer checks a file into this team project.

Step 4. Validate the Custom Policy
In this step, you check-in a source file to ensure that the custom policy works.

1. Make a change to a source file and check in the file without supplying a check in

comment.
2. Verify that the check-in is prevented because the policy rule is not satisfied.

3. Add some comments and complete the checkin. With a supplied comment the
checkin should work successfully and you will not see a policy failure notification.

Additional Resources
• To learn how to customize a check-in policy, see “Walkthrough: Customizing

Check-in Policies and Notes”, http://msdn2.microsoft.com/en-
us/library/ms181281(VS.80).aspx

• To see sample code that will disallow selected patterns on checkin, see “Checkin
Policy to Disallow Certain Patterns”:
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx

• To see sample code that will enforce comments on checkin, see “Sample Checkin
Policy: Make Sure the Comment Isn't Empty”:
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx

• To learn how to register a new checkin policy, see “I've Made a New Check-In
Policy! How Do I Add It?”:
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181281(VS.80).aspx
http://blogs.msdn.com/jmanning/archive/2006/02/02/523125.aspx
http://blogs.msdn.com/jmanning/archive/2006/01/21/515858.aspx
http://blogs.msdn.com/jmanning/archive/2006/02/07/526778.aspx

How To: Step Through Creating Your Source Tree in
Visual Studio Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To steps you through the process of creating a new source code tree structure
in Team Foundation Server. The purpose of this how to is to familiarize you with the
end-to-end steps required to create your source tree.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1. Create a new team project.
• Step 2. Create a workspace mapping
• Step 3. Create your folder structure in Source Control
• Step 4. Add your source to your source tree
• Additional Resources

Objectives
• Learn how to create your source tree in Team Foundation Server.

Overview
While you can quickly add a solution to source control by right-clicking your solution in
Solution Explorer and clicking Add Solution To Source Control, this option does not
enable you to explicitly set up your source tree structure in source control. By explicitly
defining your source tree structure in source control, you can arrange your source beneath
top level folders and use separate top level folders to contain your main source base and
your branched source base such as the branches you might use during development or to
maintain production releases.

In this how to you will see the steps required to explicitly create a source control tree
structure.

Summary of Steps
• Step 1. Create a new team project
• Step 2. Create a workspace mapping
• Step 3. Create your folder structure in Source Control

• Step 4. Add your source code to your source tree

Step 1. Create a New Team Project
In this step you create a new team project with default settings.

To create a new team project:

1. In Team Explorer, right-click your Team Foundation Server and click New Team

Project…
2. In the New Team Project dialog box, type a project name such as MyTeamProject1

and click Next.
3. On the Select a Process Template page, leave the default MSF for Agile Software

Development - v4.0 and click Next.
4. On the Specify the Settings for the Project Portal page, leave the team project

portal name as MyTeamProject1 enter a description for the team project portal and
then click Next.

5. On the Specify Source Control Settings page, leave the default option Create an
empty source control folder selected and then click Next.

6. Click Finish to create the project.

A new team project is created on your team foundation server, using the selected process
template with an empty source control node.

Step 2. Create a Workspace Mapping
In this step you create a workspace mapping to define the mapping between folder
structure on the TFS server and client. You need to do this so that you can create a source
tree structure. First the source tree structure is created in your workspace and then you
need to perform a check-in to your Team Foundation Server.

You can create a workspace mapping in one of two ways:

• Set the workspace mapping explicitly
• Perform a get operation on your team project.

To set a workspace mapping explicitly
1. In Visual Studio from the File menu, point to Source Control and then click

Workspaces.
2. In the Manage Workspaces dialog box, select your computer name and click Edit.
3. In the Edit Workspace dialog box, in the Working folders list, click Click here to

enter a new working folder.
4. Click the ellipsis button, select your team project for example MyTeamProject1,

and click OK.
5. Click the local folder cell to display another ellipsis button.

6. Click the ellipsis button beneath Local Folder and browse to and select the local
folder on your development computer where you want to locate your team project,
for example C:\DevProjects\MyTeamProject1.

7. Click OK and then OK again to close the Edit Workspace dialog box.
8. Click OK in response to the Microsoft Visual Studio message box that informs you

than one or more working folders have changed.
9. Click Close to close the Manage Workspaces dialog box.

To perform a Get operation on your team project
1. In Team Explorer, expand your team project node MyTeamProject1.
2. Double click Source Control beneath your team project.
3. In Source Control Explorer, right-click the root folder MyTeamProject1 and click

Get Latest Version.
4. In the Browse For Folder dialog box select your local path, for example

C:\DevProjects\MyTeamProject1 and then click OK. This maps the team project
root folder within Team Foundation Server to a local path on your computer.

Step 3. Create Your Folder Structure in Source Control
In this step depending upon your strategy and project requirements you create a source
control folder structure on your server. This should generally start with a /Main/Source
folder structure. This enables you to subsequently create Development and Maintenance
branches at the same level as Main. For example, the Maintenance folder would be used
to contain branched code corresponding to your software releases. The Development
folder contains your working development branch.

/Main
 /Source
 /MyApp1 Contains MyApp1.sln
 /Source Container folder
 /ClassLibrary1 Contains ClassLibrary1.csproj
 /MyApp1Web Contains Default.aspx
 /UnitTests Contains unit test projects
 /ClassLibrary1Tests Test project for ClassLibrary1
 /MyApp1WebTests Test project for MyApp1Web

/Build Contains build output (binaries)
 /Docs Contains design docs etc
 /Scripts Contains build scripts
 /TestCases Contains test case documentation

/Development
 /FeatureBranch1
 /Source
 /MyApp1
 /Source
 /MyApp1Web
 /ClassLibrary1

 /UnitTests
 /ClassLibrary1Tests
 /MyApp1WebTests
 /FeatureBranch2

/Maintenance

/Release1
 /MyApp1
 /Source
 /ClassLibrary1
 /MyApp1Web
 /UnitTests
 /ClassLibrary1Tests
 /MyApp1WebTests

/Release 1.1
/Release 1.2

To create a folder structure on the server:

1. In Team Explorer, expand your team project node MyTeamProject1.
2. Double click Source Control beneath your team project.
3. In Source Control Explorer, select the root node, right-click in the Local Path:

pane and click New Folder.
4. Type the name Main and then press ENTER.
5. Create a Source folder beneath Main.
6. Repeat the previous steps to create any other root folders you might need including

Development and Maintenance folders.
7. Once you have created your tree structure, right click the MyTeamProject1 root

node in Source Control Explorer and click Check-in Pending Changes.
8. In the Check In - Source Files – Workspace dialog box, select the folders you need

to check-in, add a comment and click Check In. This builds your local folder
structure and adds the structure to TFS source control.

Step 4. Add Your Source Code to Your Source Tree
In this step, you add source code from your local drive to your source control tree on the
server. In this example, you create a new Web application and class library project and
add these to source control.

To create a new Visual Studio solution file:

1. From the File menu, point to New, and click Project.
2. Expand Other Project Types and click Visual Studio Solutions.
3. Select Blank Solution in the Templates pane.
4. Type MyApp1 into the Name text box and

C:\DevProjects\MyTeamProject1\Main\Source into the Location text box.

5. Click OK. Visual Studio creates your new solution and places the solution (.sln) file
in the C:\DevProjects\ MyTeamProject1\Main\Source\MyApp1 folder.

To add a new Web site to your solution:

1. Right-click your solution in Solution Explorer, point to Add, and click New Web

Site.
2. Select ASP.NET Web Site from the Templates list, File System as the Location

and C:\DevProjects\MyTeamProject1\Main\Source\MyApp1\Source\MyApp1Web as
the path.

3. Click OK. Visual Studio creates the Web site.

To add a new class library project to your solution:

1. Right-click your solution in Solution Explorer, point to Add, and click New Project.
2. Select Visual C# from the Project types list, and Class Library from the Templates

list.
3. Leave the name as ClassLibrary1 and set the Location to

C:\DevProjects\MyTeamProject1\Main\Source\MyApp1\Source.
4. Click OK. Visual Studio creates the new project structure. Your local file structure

should now look like this:

To add your solution to source control:

1. Right-click your solution in Solution Explorer and click Add Solution To Source

Control.

2. Your solution, and two projects are added to Team Foundation Source Control.

Your source control tree structure should look like the following:

Additional Resources
• For more information on creating a workspace, see “How to: Create a

Workspace”: http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

How to: Customize the Process Template using Process
Editor

Applies To
• Visual Studio Team Foundation Server

Summary
This How To explains how to modify a process template in order to better suit the needs
of your team. Process templates define the initial process settings for team projects. By
customizing a process template, you can define security for team project control, what
templates are available on the project portal, source code control check-in notes, new
work item types and queries, reports for monitoring and status, and which iterations and
organization units are used.

Content
• Objective
• Overview
• Summary of Steps
• Step 1 – Install Process Editor
• Step 2 – Choose the Process Template
• Step 3 – Download the Process Template
• Step 4 – Open the Process Template in Process Editor
• Step 5 – Modify Process Template Plug-ins
• Step 6 – Modify Work Item Types
• Step 7 – Modify the Default Work Items
• Step 8 – Modify and Manage Queries
• Step 9 – Modify Areas and Iterations
• Step 10 – Modify Groups and Permissions
• Step 11 – Modify Source Control Settings
• Step 12 – Modify Project Portal
• Step 13 – Modify Reports
• Step 14 – Upload the Modified Process Template
• Additional Resources

Objective
• Learn how to customize process template using the Process Editor tool.
• Learn about various editable parts of process template

Overview
Visual Studio Team System and Team Foundation Server provide an integrated
environment that supports most of the process activities involved in a software-
development project. TFS implements its life-cycle methodologies by using process

templates. A process template is a set of XML files that provides specifications for
different artifacts and processes of a methodology. By modifying a process template you
can change the default work item types, security settings, source control settings, and
reports that are set up when a new team project is created.

To modify a process template you must first download the template you would like to
modify and then use the Process Editor to make necessary changes.

Summary of Steps
• Step 1 – Install Process Editor
• Step 2 – Choose the Process Template
• Step 3 – Download the Process Template
• Step 4 – Open the Process Template in Process Editor
• Step 5 – Modify Process Template Plug-ins
• Step 6 – Modify Work Item Types
• Step 7 – Modify the Default Work Items
• Step 8 – Modify and Manage Queries
• Step 9 – Modify Areas and Iterations
• Step 10 – Modify Groups and Permissions
• Step 11 – Modify Source Control Settings
• Step 12 – Modify Project Portal
• Step 13 – Modify Reports
• Step 14 – Upload the Modified Process Template

Step 1 – Install Process Editor
In this step you will install Process Editor. It’s a tool which provides a convenient UI
based method of viewing and customizing process templates. The Process Editor is part
of the Power tools.

1. Install DSL Tools for Visual Studio 2005 before you run the Power Tools installer.

It is a pre-requisite for the Team System Process Editor. If you don't install this, the
Power tools installer will install everything except the Process Editor. DSL tools
download is available at http://go.microsoft.com/fwlink/?LinkId=82410

2. Download the Power tools from the following URL
http://www.microsoft.com/downloads/details.aspx?familyid=7324c3db-658d-441b-
8522-689c557d0a79&displaylang=en

3. Run through the default installation, and verify that the Power tools has been
installed correctly with the Process Editor as follows

a. Click on Start and then Programs
b. There should be an option Microsoft Team Foundation Server Power

Tools, click on it.
c. It should display Microsoft Visual Studio Team System Process Editor.
d. This means the Process Editor has been installed correctly, if not then

uninstall the Power Tools and reinstall with the right sequence as specified in
above steps.

http://go.microsoft.com/fwlink/?LinkId=82410
http://www.microsoft.com/downloads/details.aspx?familyid=7324c3db-658d-441b-8522-689c557d0a79&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=7324c3db-658d-441b-8522-689c557d0a79&displaylang=en

Step 2 – Choose the Process Template
In this step you choose an out-of-box template which is closest to your adopted process,
so that you have to make very few changes to confirm to your customized process. Here
are the details about out-of-box process templates to help you in making the decision.

MSF for Agile Software Development

The MSF for Agile Software Development is optimally designed for small projects on a
rapid delivery schedule. You might want to choose the MSF for Agile Software
Development template if your business:
• Does not have a great deal of documented process and does not have interest in

developing formal processes.
• Has small software development teams.
• Can accommodate many small development teams working in multiple ways.
• Has short software development cycles (measured in weeks or months).
• Supports multiple software releases in a calendar year.
For more information, see Visual Studio Team System: MSF for Agile Software
Development (http://go.microsoft.com/fwlink/?LinkId=51460).

MSF for CMMI Process Improvement

The MSF for CMMI Process Improvement process model was created in the business
world largely outside the software development culture by professionals who believe that
formalizing and improving best practices through lessons learned is critical to long-term
success. You might want to choose the MSF for CMMI Process Improvement template if
your business:
• Wants to evaluate current business practices.
• Has large software development teams.
• Needs to integrate traditionally separate groups or organizations.
• Can provide guidance for quality processes.
• Has longer software development cycles.
For more information, see Visual Studio Team System: MSF for CMMI Process
Improvement (http://go.microsoft.com/fwlink/?LinkId=51462).

Step 3 – Download the Process Template
In this step you will download the chosen process template to be modified for adapting to
your customized process.

1. In Visual Studio instance click Team and select Team Foundation Server Settings
2. Click Process Template Manager…
3. In the Process Template Manager dialog, select the process template you want to

modify and click Download.
4. In the Download Process Template dialog select the folder location on your local

drive and click Save.

http://go.microsoft.com/fwlink/?linkid=51460
http://go.microsoft.com/fwlink/?linkid=51462

Step 4 – Open the Process Template in Process Editor
In this step you load the downloaded process template in the process editor for modifying
various settings.

1. In a Visual Studio instance, select the Team menu.
2. Click Process Editor, and then click Open Process Template.
3. In the Open Process Template fileset dialog, navigate to the downloaded process

template and click Open
4. It will open the ProcessTemplate.xml file in the Visual Studio instance.
5. Set the Name of the methodology you are customizing for.

Step 5 – Modify Process Template Plug-ins Selection
In this step you will modify the process template plug-ins selection that runs when a new
team project is created. A plug-ins sets up required files or configures data for its area.
Microsoft provides following plug-ins with Microsoft Visual Studio 2005 Team System:
• Classification – Structure definition for the project
• Reporting – Project Reports uploading
• Portal – Creating project site.
• Work item tracking – Work items definition uploading.
• Version control - Creating Version control
• Groups – Create groups and assign permissions.

In the Methodology Detail page select the wizard’s you want to display at the time of
project creation. So that users can modify them as required

Step 6 – Modify Work Item Types
In this step you can add new work items types specific to your process or modify the
default Work Item Types.

1. In the Process Template Explorer click Work Item Tracking.
2. Then select the Type Definitions tab in the right pane.
3. To create a new work item, click Add in the toolbar in the right pane.
4. In the New Work Item Type dialog, enter a name for the work item type and select

an existing work item type from the Copy From drop-down list.
5. The new work item type will be created and available in the Item List in the Type

Definitions tab in the right pane.
6. To save the changes click Save option under File menu.
7. If you want to add / remove attributes / fields to the new work item type or an existing

work item type.
8. In the Type Definitions tab, right-click the work item type you want to edit
9. Select Open.
10. The selected work item type will open in a new Visual Studio window.
11. Here you can add / remove the attributes you want.

Step 7 – Modify the Default Work Items
In this step you can add or remove the default work items which are created at the time of
team project creation.

1. In the in the Process Template Explorer click Work Item Tracking.
2. Then select the Default Work Items tab in the right pane.
3. To create a new default work item type, click Add in the toolbar in the right pane.
4. In the Choose Type dialog box, select a work item type.
5. In the dialog box which opens, fill in the appropriate fields.
6. Click OK.

Step 8 – Modify and Manage Queries
In this step you can modify, add or remove the default queries created at the time of team
project creation.

1. In the Process Template Explorer click Work Item Tracking.
2. Then select the Queries tab in the right pane.
3. To create a new query Click Add in the toolbar in the right pane.
4. In the Query Reference dialog box, enter the name of the new query.
5. Then click the Edit Query Definition button.
6. Use the Fields, Sorting, and Criteria tabs in the Query Edit dialog to define your

query.
7. Click OK.

Important - The Process Editor does not provide comprehensive features for editing
queries. It is better to edit and test a query in a running Team project in Visual Studio
than in a process template. You can then save them to files that can be imported to other
projects or copied into process templates.

Step 9 – Modify Areas and Iterations
In this step you can set up the default iterations and areas that are available at the time of
team project creation.

1. In the Process Template Explorer click Areas & Iterations.
2. Then select the Areas or Iterations tab in the right pane.
3. Use the toolbar in the right pane to add, remove, or move areas or iterations

Step 10 – Modify Groups and Permissions
In this step you modify, remove or add groups and their permissions that are available at
the time of team project creation.

1. In the Process Template Explorer click Groups & Permissions.
2. To create a new group, click Add in the toolbar in the right pane.
3. In the Group dialog box, enter the name of the new group and a brief description of

what the members of the group can do and then click OK

4. Select a group in the top section of the right pane, and assign permissions to that
group in the section below. You can select Allow, Deny or leave it Unset. An Unset
permission is an implicit deny.

Step 11 – Modify Source Control Settings
In this step you can modify the source control settings for parallel edits and check-in
edits.

1. In the Process Template Explorer, click Source Control
2. Then select the Checkout Settings tab in the right pane.
3. If you want to allow more than one person to edit a file at the same time, select the

Enable Multiple Checkout check box.
4. Select the Checkin Notes tab in the right pane.
5. To create a new Checkin Note Field click Add in the toolbar in the right pane
6. To edit an existing Checkin Note Field select it and click Open.
7. Make necessary changes in the Checkin Note dialog box.
8. Then click the OK button.
9. You cannot make any changes on the Permissions tab in this version of the Process

Editor.

Step 12 – Modify Project Portal
In this step modify the project portal to display specific reports, documents and process
guidance.

1. In the Process Template Explorer click Portal
2. To create a new library right-click the Portal node in the middle pane and click New

Document Library.
3. Enter the name and description of the library in the Document Library dialog box.
4. Then click OK.
5. Right-click a document library and click New Folder to create a new folder.
6. In the Folder Properties dialog box, enter the name of the new folder.
7. Select a folder and click Add on the toolbar in the right pane to upload a new

document.
8. In the File Import dialog box, browse to the file you want to upload.
9. The Destination Folder and Share Point Folder fields will be automatically

populated. Leave the Query Id field unchanged
10. Then click Import.
11. To edit the properties of an existing document in the document library, select the

document in the right pane, and click Open on the toolbar.
12. In the File Edit dialog box, change the name of the file in the Name field. Do not

change the other fields.
13. Then click OK.

Step 13 – Modify Reports
In this step you add, remove and modify the default reports created at the time of team
project creation.

1. In the Process Template Explorer click Reports
2. Click Add on the toolbar.
3. In the Report dialog, on the Report Detail tab, enter a name for the report.
4. Then browse to the .rdl file you want to add in the File Name field. Leave the other

fields unchanged.
5. Do not make any changes to the data in the Properties and Parameters tabs.
6. On the DataSources tab, enter the appropriate data sources. The default data sources

for process templates shipped in Team Foundation Server are /TfsOlapReportDS and
/TfsReportDS

7. Then click Ok.

Step 14 – Upload the Modified Process Template
In this step you upload the modified process template to TFS server, so that its available
when the new team project is created.
1. In Visual Studio instance click Team and select Team Foundation Server Settings
2. Click Process Template Manager…
3. In the Process Template Manager dialog, click Upload button.
4. Browse to the local folder where the process template was downloaded and modified.
5. Click the Upload button on the Upload Process Template dialog.
6. The new process template should be listed in the Process Templates: list.
7. Click the close button.

Now when you create a new team project you will have the newly created process as one
of the options when choosing the process templates.

Additional Resources
• For more information on process template customization, see “Process Template

Customization Overview”: http://msdn2.microsoft.com/en-
us/library/ms194945(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms194945(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms194945(VS.80).aspx

How To: Customize a Report in Visual StudioTeam Foundation
Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To describes how to customize an existing report and then publish it to the team
reporting portal in Team Foundation Server.

Contents
• Objectives
• Overview
• Summary of Steps
• Before You Begin
• Step 1 – Create a new reporting project
• Step 2 – Export the report you want to customize
• Step 3 – Create the data sources
• Step 4 – Add the report to your project
• Step 5 – Modify the report
• Step 6 – Deploy the report to your Team Foundation Server
• Step 7 – Test the report
• Additional Resources

Objective
• Create a reporting project in Visual Studio
• Customize an existing report within the reporting project
• Publish the new report to the report server

Overview
The reports that ship with VSTS are SQL Server Reporting Services reports. You can amend
these reports or create your own custom reports by using the SQL Server 2005 Reporting
Services Designer inside Visual Studio (Business Intelligence Development Studio), which ships
with the SQL Server 2005 client tools.

Customizing a report allows you to add functionality to an existing report without having to
build a new report from scratch. If a report you need is similar to one that already exists,
customize the existing report in order to save time. To customize an existing report it must be
exported from the report server, added to an existing report project in Visual Studio, and then
redeployed to the reporting portal after changes are made.

Summary of Steps
• Step 1 – Create a new reporting project
• Step 2 – Export the report you want to customize
• Step 3 – Create the data sources
• Step 4 – Add the report to your project
• Step 5 – Modify the report
• Step 6 – Deploy the report to your Team Foundation Server
• Step 7 – Test the report

Before You Begin
Before you can customize a report for Team Foundation Server, you must ensure you have the
following pre-requisites in place:

• You must have Business Intelligence Development Studio installed on the machine you
will be using to customize the report. To test if it is installed, check Visual Studio to see
if you have Business Intelligence Project type when you create a new project.

• Your user account must be a member of the Microsoft Analysis Server
TfsWarehouseDataReaders security role on the data-tier server.

• Your user account must have administrator rights to the TFSWarehouse database on the
data tier.

• Your user account must be a member of the SQL Server Reporting Services Publisher
role on the application-tier server.

Step 1 - Create a new reporting project
Create a new reporting project so that you can add an existing report to the project and customize
it. Use the following steps to create a new reporting project in Visual Studio:

1. Click File, then click New, then click Project.
2. Select the Business Intelligence Project type.
3. Select the Report Server Project template.
4. Set your project’s Name and Location and then click ok.

Step 2 - Export the report you want to customize
Export the report you would like to customize from the project portal so you can import it into
the new reporting project. Use the following steps to export a report:

1. Right click on your team project and select Show Project Portal.
2. Click Reports in the Quick Launch bar on the left hand side of the portal web site.
3. Click the report you are interested in customizing.
4. Click Properties.
5. Select Edit.
6. Save the report rdl file into the reporting project folder you created in step 1.

Step 3 - Create the data sources
In order to edit and publish the customized report you need to add data sources for the Team
Foundation Server data warehouse and OLAP cube. Once these data sources are added to the
Visual Studio project the report can pull data from the server.

Create the warehouse data source:

1. In the Visual Studio Solution Explorer, right click Shared Data Sources and click Add
New Data Source.

2. Enter TfsReportDS into the Name text box on the General tab.
3. Select Microsoft SQL Server from the Type combo box.
4. Click on the Edit… button.
5. Fill in your data tier server name.
6. Select the the database TFSWarehouse.
7. Click the OK button twice to add the data source.

Create the OLAP data source:

1. In Solution Explorer, right click Shared Data Sources and click Add New Data
Source.

2. Enter TfsOlapReportDS into the Name text box on the General tab.
3. Select Microsoft SQL Server Analysis Services from the Type combo box.
4. Click on the Edit… button.
5. Fill in your data tier server name.
6. Select the database TFSWarehouse.
7. Click the OK button twice to add the data source.

Step 4 - Add the report to your project
Now that the data sources have been added to your project you can add the report that you
exported in step 2:

1. In Solution Explorer, right click Reports and select Add->Existing Item...
2. Browse to the rdl file you exported in step 2

Step 5 - Modify the report
Now that you’ve added the report to your project you can make modifications in order to
customize it for your needs. To open the report for modification, double click it in the Solution
Explorer. Once you’ve opened it you can make modifications such as:

• Modify query statements in the Data Pane.
• Drag new measures or members into the Data Pane.
• Modify the report layout in the Layout Pane.

Step 6 - Deploy the report to your Team Foundation Server
After you’ve made modifications to the report, you can deploy it to your team project’s reporting
portal by using the following steps:

1. Right click on the report project in Solution Explorer and click Properties.
2. Ensure OverwriteDataSources is set to false.
3. Modify TargetDataSourceFolder to your team project name. Example:

TargetDataSourceFolder = TestProject.
4. Modify TargetReportFolder to your team project name. Example:

TargetDataSourceFolder = TestProject.

5. Modify TargetDataSourceFolder to http://<data-tier servername>/reportserver.
Example: TargetDataSourceFolder = http://tfsrtm/reportserver.

6. Click OK.
7. Right click on the rdl file in Solution Explorer and click Deploy.
8. Watch the Output Pane for successful completion.

Step 7 - Test the report
After you’ve published the report to your team project’s report server you can test it to make sure
it was successfully deployed:

1. Right click on your team project and select Show Project Portal.
2. Click Reports in the Quick Launch bar on the left hand side of the portal web site.
3. Select the report you customized.
4. Verify the customization you created is in place.

Additional Resources
• For more tutorials explaining how to work with reporting projects, see "Reporting

Services Tutorials": http://msdn2.microsoft.com/en-us/library/ms170246.aspx
• For the MSDN article on editing reports, see "How to: Edit Reports in Report Designer":

http://msdn2.microsoft.com/en-us/library/ms244655(VS.80).aspx
• For more information on security roles in the data-tier, see "Securing Access Through

Analysis Services": http://msdn2.microsoft.com/en-us/library/ms174839.aspx
• For more information on security roles in the application-tier, see "Securing Reporting

Services": http://msdn2.microsoft.com/en-us/library/ms157198.aspx

http://msdn2.microsoft.com/en-us/library/ms170246.aspx
http://msdn2.microsoft.com/en-us/library/ms244655(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms174839.aspx
http://msdn2.microsoft.com/en-us/library/ms157198.aspx

How To: Manage Projects in Visual Studio Team
Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To shows you how to initiate new software development projects by creating
and configuring new team projects based on a selected template. It also describes how to
use Team Foundation Server tools to manage, control and monitor the ongoing software
development processes throughout the software development lifecycle.

Contents
• Objective
• Overview
• Summary of Steps
• Before You Begin
• Step 1 – Choose a Process Template
• Step 2 – Create a Team Project
• Step 3 – Create Security Groups (Optional)
• Step 4 – Add Team Members in Team Foundation Server
• Step 5 – Determine Your Iteration Cycle
• Step 6 – Capture Your Project Scenarios in TFS
• Step 7 – Identify the Scenarios for the Iteration
• Step 8 – Define Your Quality of Service Requirements
• Step 9 – Plan Your Iteration
• Step 10 – Monitor Progress
• Areas and Iteration Consideration
• Additional Resources

Objective
• Learn how to manage projects in TFS

Overview
Visual Studio Team System provides tools and reports to help project managers to
control and support the entire software development lifecycle in a unified and centralized
manner. By controlling the software process directly through Visual Studio Team System
and a centralized database shared by all team members, team communication is
improved, and handoffs required between team members are automated. By using reports
driven from the team foundation server data warehouse it is also much easier to monitor
and track project progress.

This How To walks you through the process or creating and configuring a new team
project and then how to monitor the progress of an ongoing project.

Summary of Steps
• Step 1 – Choose a Process Template
• Step 2 – Create a Team Project
• Step 3 – Create Security Groups (Optional)
• Step 4– Add Team Members in Team Foundation Server
• Step 5 – Determine Your Iteration Cycle
• Step 6 – Capture Your Project Scenarios in TFS
• Step 7 – Identify the Scenarios for the Iteration
• Step 8 – Define Your Quality of Service Requirements
• Step 9 – Plan Your Iteration
• Step 10 – Monitor Progress.

Before You Begin
Before you start creating a new team project, you should gather the following
information:

• The style of project you want to manage. This determines the initial template you

should select and base your project on. It also helps you evaluate the degree of
customization you need to make to the supplied templates. If you favor an agile style
of project, start by selecting the MSF for Agile Software Development template and
then consider any customizations you night need.

• The project name. Give careful consideration to the naming convention that you use
for the team projects you create. Make sure that your project names are sufficiently
unique and use names that enable other people to easily find the project. Some
organizations use project codes as part of their names, others might use a combination
of department and project title.

• Source control structure. Consider whether you need to start with an empty source
control tree of whether your project should be based on existing source code.
Evaluate an appropriate source control structure based on your code and branching
needs. For more information, see “How To: Structure Your Source Control Folders.”

Step 1 – Choose a Process Template
Start by selecting your process template. Evaluate the style of project you want to
manage and examine the different features provided by each of the two supplied
templates. Features to evaluate include work item definitions (do they provide sufficient
fields for your needs?), document templates, workflows, check in policies and reports.

The Team Foundation Server provides following process templates

• MSF for Agile Software Development – This is a lightweight process for small and
informal software projects. It is based on scenarios and context driven actions and is
project and team member (people) centric.

• MSF for CMMI® Process Improvement – This is designed for more mature
software projects. It extends MSF for Agile Software Development by providing
support for auditing, verification and formal processes. It relies on process and
conformance to process and is organization centric.

If required you can customize the supplied process templates to align them more closely
with your processes. For more information about customizing the process templates see
“How To – Customize Process Template”.

The remainder of this How To, assumes that you have selected the MSF for Agile
Software Development Template.

Step 2 – Create Team Project
To create a new team project:

1. Ensure that Visual Studio is connected to Team Foundation Server instance.
2. In the Team Explorer right click the server node and click New Team Project…
3. On the first page of the project creation wizard, enter the name of your Team Project

and then click Next.
4. On the Select a Process Template page, from the drop down select the process

template you have chosen in Step 1. For this example choose the MSF for Agile
Software Development –v4.0 and then click Next.

5. On the Specify the Settings for the Project Portal page, enter the name and
description for team project portal and then click Next. The name you supply here is
used to build the Windows SharePoint Services Web site for your project portal.

6. On the Specify Source Control Settings, select Create an empty source control
folder and then click Next.

7. On the Confirm Team Project Settings, review the settings and click Finish.

This creates a Team Project on the TFS server based on the MSF for Agile Software
Development process template.

Step 3 – Create Security Groups (Optional)
When you create a project in Team Foundation Server, four default groups are created for
that project regardless of your choice of process template. By default, each of these
groups has a set of permissions defined for them that govern what members of those
groups are authorized to do. The four groups are:

• Project Administrator
• Contributor
• Reader
• Build Services.

You can create security groups for your team project to better meet the security
requirements of your organization. Creating a security group is an efficient way to grant a
specific set of permissions to a group of users on your team project. Make sure that you
allow only the minimum permissions necessary for the group, and add only those users or
groups who must belong to this new team project group.

To perform this procedure, you must be a member of the Project Administrators group
although you do not need to be a Windows administrator.

1. In Team Explorer, select the team project for which you want to create a group.
2. On the Team menu, point to Team Project Settings, and then click Group

Membership.
3. In the Project Groups dialog box, click New.
4. In the Create New Team Foundation Server Group dialog box, in the Group

name box, type the name for the team project group.
5. In the Description box, type a description for the group.
6. Click OK and then Close.

After you have created a team project group, give the group the appropriate permissions,
and add members to the group. By default, a team project group is created without any
permission granted.

Step 4 – Add Team Members in Team Foundation Server
In this step identify the resources that will be working on the project, their roles and
assign these team members to Team Foundation Server. You can add users to existing
team project groups or server-level groups. You must also add members to groups that
you create. To perform this procedure, you must be a member of the Team Foundation
Administrators group.

1. In Team Explorer, select your team project.
2. On the Team menu, point to Team Project Settings, and then click Group

Membership, or, to add users to a server-level group, point to Team Foundation
Server Settings, and then click Group Membership.

3. In the Project Groups dialog box, select the group to which you want to add users,
and then click Properties.

4. In the Team Foundation Server Group Properties dialog box, on the Members
tab, under Add member, select Windows User or Group.

5. Click Add.
6. In the Select Users or Groups dialog box, under Enter the object names to select,

enter the domain name and alias of the users you want to add in the following format:
domain\username
To add more than one user at a time, separate the entries with a semicolon (;).
7. Click OK, OK again and then Close.

Step 5 – Determine Your Iteration Cycle
Iterations are fixed-length chunks of time in which you plan, schedule, and perform work.
All components of the software development lifecycle, from requirements definition
through analysis, design, development, coding, and testing are grouped into these
iterations, which typically last anywhere from 2 to 6 weeks.

In this step you determine the iteration cycle for your project. The important points to
keep in mind while determining the iteration cycle are:

• The iteration cycle should be large enough to get substantial work done, and cover at

least a few scenarios
• The iteration cycle should be small enough to be flexible to accommodate changes

and priorities.

This will depend upon the size and complexity of your project. In practice 2 weeks
iteration cycle works for most projects.

Step 6 – Capture Your Project Scenarios in TFS
In this step you capture your project scenarios in TFS so that you can plan better
execution of your project and track its progress.

1. Create a project back log (PBL) document from inputs from the various stake holders

including customers, business analysts, end users and product managers. The PBL is
generally a Word document designed mainly to capture requirements

2. Use the PBL as input and scope out the scenarios for your project.
3. You can create all the scenarios at the start or you can create scenarios as you move

through iterations. To gain a better picture of your whole project and to help track
progress you are recommended to capture all your scenarios upfront.

4. Create an iteration called “Iteration 999” for your project and assign your scenarios to
it for ease of retrieval and tracking.

To create a scenario in a project that uses the MSF Agile Software Development
template.

1. In Team Explorer expand the project node and right click on the Work Items folder
2. Point to Add Work Item and then click Scenario
3. In the New Scenario page, enter the details for the Scenario. Make sure to set the

Iteration to “Iteration 999”
4. Save your new Scenario.
5. Repeat the above steps for all the scenarios that you have identified for the project.

Step 7 – Identify the Scenarios for the Iteration
In this step you identify the scenarios to be worked on during a specific iteration. You
repeat this step for each iteration cycle.

1. Identify the work items to be worked on during a specific iteration, based on inputs
from the project stakeholders and your feature priorities.

2. Assign these work items to the iteration

To retrieve work items and assign them to a specific iterations.

1. Right click on the Work Items folder in your project and click Add Query
2. In the New Query, add a new And clause. Select Iteration Path from the Field drop

down and set its value to Iteration 999
3. Add a new And clause to specify Work Item Type = Scenario
4. Press F5 to execute the query and display all the pending scenarios.
5. Double click the scenario you want to work on in the iteration.
6. Change the Iteration to the current iteration path and click the save button.
7. Repeat the above steps for all the identified scenarios.

Important – You can save your query for future use.

Step 8 – Define Your Quality of Service Requirements
In this step you define your Quality of Service Requirements (QOS) for each of the
scenarios to be worked on during the iteration cycle. You repeat this step for each
iteration cycle. This helps define the acceptance criteria for the scenario. The inputs for
the QOS come from project goals, requirements and specification documentation if
available.

1. Right click on the Work Items folder of your project and point to Add Work Item

and then click Quality of Service Requirements.
2. In the New Quality of Service Requirements page, add the following details

a. Set the Type to an appropriate value such as performance, scalability, stress or
securit.

b. Set the Iteration to the current iteration cycle.
c. From the Links tab, link the QOS to a specific scenario, for easier traceability.

3. Save the new QOS requirement.
4. Create one QOS for each discipline or kind of quality requirements, bearing in mind

that each scenario can have multiple QOS.
5. Make sure you create QOS for all of the scenarios being worked in a specific iteration

cycle.

Important – You can break down the QOS into test tasks later on.

Step 9 – Plan Your Iteration
In this step you plan for the iteration by breaking down the scenarios into tasks,
estimating for them and assigning the tasks to the relevant team member. You repeat this
step for each iteration cycle.

Developer Tasks
1. Break down the chosen scenarios into developer stories
2. Subdivide the developer stories into developer tasks.
3. Capture developer tasks in TFS as task work items.

a. In Team Explorer, under your project node, right click the Work Items
folder.

b. Point to Add Work Item and then click Task.
c. In the New Task page, add the following details

i. Set Discipline to Development.
ii. Set Iteration to the current iteration cycle.

iii. On the Links tab link the task to the specific scenario for easier
traceability.

iv. Here along with the description you can capture the acceptance criteria
for the task, which can determine if the task is completed successfully.

v. Set the Assigned to field to the developer who will be working on the
task.

d. Save the new task.
e. Repeat the above steps for all the identified tasks.

4. Repeat the above steps for all the identified scenarios for the iteration.

Test Tasks
1. Break down the QOS for the identified scenario into test cases.
2. Divide the test cases into test tasks.
3. This test tasks are captured in TFS as task work items

a. In Team Explorer, under your project node, right click the Work Items
folder.

b. Point to Add Work Item and then click Task.
c. In the New Task page, add the following details

i. Set Discipline to Test.
ii. Set Iteration to the current iteration cycle.

iii. On the Links tab link the task to the specific QOS for easier
traceability.

iv. Here along with the description you can capture the acceptance criteria
for the task, which can determine if the task is completed successfully.

v. Set the Assigned to field to the tester who will be working on the task.
d. Save the new task.
e. Repeat the above steps for all the identified tasks.

4. Repeat the above steps for all the QOS for the iteration

Others
1. Capture any relevant tasks for the iteration for other disciplines like Architecture,

Release Management, Project Management and Requirements which needs to be
tracked.

2. Link each of these tasks to the appropriate scenario for easier traceability.

For large projects that contain a huge number of work items, you can use the Excel
integration feature to create work items in the Excel spread sheet and then upload it into
TFS. For more information see “Working with Work Item Lists in Microsoft Excel” at
http://msdn2.microsoft.com/en-us/library/ms181694(VS.80).aspx

For large projects that contain large number of resources, you can use Microsoft Project
integration feature to track the work items and balance the task assignment. For more
information see “Working with Work Items in Microsoft Project” at
http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx

Step 10 – Monitor Progress
In this step you identify the key performance indicators (KPIs) and link to the reporting
feature, for easy tracking of the project.

Areas and Iteration Consideration
• You can use root level as area to start with
• Later on as and when you have logical differentiation of various areas within your

project for example UI, Biz, Data etc, you can assign your scenarios / workitems to
the specific areas.

Additional Resources
• For more information see “Working with Work Item Lists in Microsoft Excel” at

http://msdn2.microsoft.com/en-us/library/ms181694(VS.80).aspx
• For more information see “Working with Work Items in Microsoft Project” at

http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181694(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181694(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms244368(VS.80).aspx

How To: Migrate Source Code to Visual Studio Team
Foundation Server from Visual Source Safe

Applies To
• Visual Studio Team Foundation Server

Summary
To migrate version controlled source code from VSS to TFS, you use the VSS converter
tool. This tool allows you to migrate files, folders, version history, labels, and user
information from a VSS database to a TFS source control database. Prior to migrating
your source you need to backup and prepare your VSS source database.

Contents
• Objectives
• Overview
• Before You Begin
• Summary of Steps
• Step 1. Backup your VSS database
• Step 2. Analyze your VSS database to resolve data integrity issues
• Step 3. Analyze your projects in VSS
• Step 4. Prepare to migrate your projects
• Step 5. Migrate your projects
• Additional Considerations
• Additional Resources

Objectives
• Migrate Visual Source Safe projects to TFS

Overview
Team Foundation Server provides tools to help you migrate existing source maintained in
a Visual Source Safe (VSS) database to Team Foundation Server source control. TFS
provides a VSS converter tool which allows you to migrate files, folders, version history,
labels, and user information.

Before You Begin
To successfully perform the steps outlined in this How To:

• You must be logged in with an account that is a member of the Team Foundation

Administrators group.
• You must have the VSS 2005 client installed on the computer the converter is running

on. The converter stops with a warning if you are running an earlier version of VSS.

You should also make sure that you use the VSS 2005 client Analyze command in the
event that the 2005 Analyze command is able to detect issues that previous versions
were not. The VSS database does not need to be a native 2005 database.

• You must have SQL Express installed and enabled on the computer the converter is
running on. The converter tool uses the local SQL instance as a temporary database
during the conversion. SQL Express is installed by default with Visual Studio 2005.

• Make sure you gather your TFS domain name and the list of TFS user names as
defined in your Active Directory.

• Make sure you have your VSS administrator user name and password and your TFS
project administrator username and password.

Summary of Steps
• Step 1. Backup your VSS database
• Step 2. Analyze your VSS database to resolve data integrity issues
• Step 3. Analyze your projects in VSS
• Step 4. Prepare to migrate your projects
• Step 5. Migrate your projects

Step 1. Backup Your VSS Database
Prior to performing a migration start by creating a backup copy of the Visual SourceSafe
Database you want to migrate.

To backup your VSS database:

1. Ask all users to check in their files and then log off the VSS database. Ask them to

close both the Visual Studio IDE and VSS explorer.
Important: Checked out files are not be migrated to TFS.

2. Check that no one is currently logged into the database.
3. Make sure that no analyze jobs are scheduled to run against the database.
4. Copy the following folders to your backup location:

 \DATA
 \Temp
 \USERS

5. Copy the following files to your backup location:
User.txt
Srcsafe.ini

Step 2. Analyze your VSS Database to Resolve Data
Integrity Issues
In this step, you use the Visual SourceSafe Analyze utility to locate and fix data integrity
issues in the database.

To use the VSS Analyze Utility:

1. Run Analyze.exe to search for database corruption or database errors. Use the
following command-line:

analyze "<sourcesafe data directory>"

Use the -I option for unattended execution. This command reports potential problems.

2. If there are permissions problems, "unable to checkout files" errors, "losing checkout

status" errors, or any other errors that refer to the Status.dat file or to the Rights.dat
file, run the Ddconv.exe program or the Ddconvw.exe program. These programs
update a SourceSafe database from an older format to the current format. By default,
these programs are installed in the \Admin subdirectory.

Step 3. Analyze Your Projects in VSS
In this step, you determine which projects you want to migrate and then run the TFS
command line tool VSSConverter.exe to analyze the VSS database for any potential
issues that might cause migration problems.

To analyze your projects by using VSSConverter.exe

1. Create an XML settings file (called for example ConversionSettings.xml) as shown

here:

 <?xml version="1.0" encoding="utf-8"?>
 <SourceControlConverter>
 <ConverterSpecificSetting>
 <Source name="VSS">
 <VSSDatabase name="c:\VSSDatabase">
 </VSSDatabase>
 </Source>
 <ProjectMap>
 <Project Source="$/MyFirstProject"></Project>
 <Project Source="$/MySecondProject"></Project>
 </ProjectMap>
 </ConverterSpecificSetting>
 </SourceControlConverter>

In the above sample, MyFirstProject and MySecondProject represent the names of
the project folders in VSS that you want to migrate. To migrate an entire VSS
database, use <Project Source="$/"></Project>.

2. Run VSSConverter.exe passing in the Analyze switch, from a Visual Studio

command prompt to analyze your projects:

VSSConverter Analyze ConversionSettings.xml

When prompted, enter the Visual SourceSafe administrator password.

3. Examine the output report. The conversion tool creates an output report called

VSSAnalysisReport.xml and a user mapping file called Usermap.xml, in the current
directory. You can use the user mapping file to map Visual SourceSafe users to Team
Foundation users as described below.

4. Map VSS users to TFS users. The VSSConverter tool produces a UserMapping.xml
file that contains a list of all VSS users that performed at least one operation on the
VSS database. Edit the UserMapping.xml file and add your associated TFS user
names. You must specify user names including the domain
(MyDomain\MyUserName).

Step 4. Prepare to Migrate Your Projects
In this step, you use the VSSConverter.exe tool to migrate your VSS projects.

1. Modify the ConversionSettings.xml file created in Step 3 and add

a new <Settings> element containing a <TeamFoundationServer> element as
shown here:

<Settings>
 <TeamFoundationServer name="YourTFSServerName"
 port="PortNumber"
 protocol="http">
 </TeamFoundationServer>

 </Settings>

Add the <Settings> element directly after </ConverterSpecificSettings> as a child
element of <SourceControlConverter>.

2. Modify the ConversionSettings.xml file created and add Destination attributes to the

<Project> elements as shown below. Set the value of the Destination attributes to
the folder location in your TFS Team project where you want to migrate your files.

<?xml version="1.0" encoding="utf-8"?>
 <SourceControlConverter>
 <ConverterSpecificSetting>
 <Source name="VSS">
 <VSSDatabase name="c:\VSSDatabase">
 </VSSDatabase>
 </Source>
 <ProjectMap>
 <Project Source="$/MyFirstProject"
 Destination="$/MyTeam_ProjectOne">
 </Project>
 <Project Source="$/MySecondProject"

 Destination="$/MyTeam_ProjectTwo">
 </Project>
 </ProjectMap>
 </ConverterSpecificSetting>
 <Settings>
 <TeamFoundationServer name="YourTFSServerName"
 port="PortNumber"
 protocol="http">
 </TeamFoundationServer>
 </Settings>
 </SourceControlConverter>

In the <ProjectMap> section, for each VSS folder that you are migrating, replace
MyFirstProject with the source VSS folders and replace MyTeam_ProjectOne with
the destination folders in Team Foundation source control. Include a <Project> entry
for all the folders that you want to migrate.

Step 5: Migrate Your Projects
Copy your Visual SourceSafe database to a local folder on the computer on which you
want to run analysis and migration. Although you can migrate a Visual SourceSafe
database in a shared folder on a remote computer, the migration takes much longer to
finish.

To perform the migration:

1. At the command prompt, type the following.

VSSConverter Migrate Conversionsettings.xml

2. Enter Y to confirm the migration. When prompted, enter the password for the Visual

SourceSafe admin user.

Additional Considerations
If you used, sharing, branching or pinning in VSS you should be aware of the following
issues.

• Sharing. Team Foundation Server does not support sharing. Shared files are migrated

by copying the version of the file at the time sharing began to a destination folder.
Any subsequent changes made to the shared file are replicated to both the shared and
the original copies.

• Branching. Because branching in VSS uses sharing, the migration of a branched file
results in the file being copied to the destination folder in TFS source control. After
the branch event, the changes to any branch are migrated to the respective copy in
Team Foundation source control.

• Pinning. Team Foundation Server does not support pinning. To help you locate items
in Team Foundation source control that were once pinned in the VSS database, the
VSSConverter tool labels any file that was pinned with the “PINNED” label.

For optimum performance (especially important for large VSS databases), run the
conversion on your TFS server computer.

Additional Resources
• For more information on how to prepare for migration, see:

http://msdn2.microsoft.com/en-us/library/ms181246(en-us,vs.80).aspx
• For more information on how to perform the migration, see:

http://msdn2.microsoft.com/en-us/library/ms181247(VS.80).aspx
• For more information on the limitations of the Visual SourceSafe converter, see:

http://msdn2.microsoft.com/en-us/library/ms252491(VS.80).aspx
• For more information about the VSS Analyze tool, see

http://msdn2.microsoft.com/en-us/library/ysxsfw4x.aspx.
• For more information about the VSSConverter migrate command, see

http://msdn2.microsoft.com/en-us/library/ms400685(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181246(en-us,vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181247(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms252491(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ysxsfw4x.aspx
http://msdn2.microsoft.com/en-us/library/ms400685(VS.80).aspx

How To: Perform a Baseless Merge in Visual Studio
Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To shows you how to merge files from two branches that are not related to one
another. The process of merging items that are not directly branched from each other is
called a baseless merge. To perform a baseless merge, you must use the Tf merge
command. You cannot perform a baseless merge operation from Visual Studio.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1. Evaluate if a baseless merge is needed
• Step 2. Perform a baseless merge by using Tf.exe
• Step 3. Resolve merge conflicts
• Step 4. Check-in the merged changes
• Additional Resources

Objectives
• Learn how to perform a baseless merge

Overview
In this how to you learn to do a baseless merge. The process of merging items that are not
directly branched from each other is called a baseless merge. For example, you might
want to merge a change between two release branches, which are siblings of each other,
without merging up to the parent branch. You can only perform a baseless merge by
using the Tf.exe command line utility. You cannot perform a baseless merge from Visual
Studio.

When you perform a baseless merge Team Foundation Server does not have any
information about the relationship of the files in the branches. For example, if you have
renamed a file, this will be viewed as a deleted file and a new file in the branch. For this
reason you have to perform more manual conflict resolutions than when you perform a
normal merge. However, you only have to perform this conflict resolution once. After
you have performed the baseless merge, Team Foundation Server records history and
establishes a relationship between the folders and files.

Summary of Steps
• Step 1. Evaluate if a baseless merge is needed
• Step 2. Perform a baseless merge by using Trif.exe
• Step 3. Resolve merge conflicts
• Step 4. Check-in the merged changes

Step 1. Evaluate if a Baseless Merge Is Needed
In this step you evaluate the branches and items to be merged to determine if you need to
do a baseless merge or whether a regular merge will work.

If you are owner / administrator of your team project you will know the relationships of
the branches or items. You can only merge from Visual Studio the branches or items
which have a parent-child relationship. If your project contains branches or items which
do not have this relationship, you require a baseless merge.

If you are not aware of all the relationships of the branches or items, you can evaluate if
you need to use a baseless merge as follows.

• Open Source Code Explorer.
• Right-click the branched folder and click Merge.
• In the Source Control Merge Wizard dialog box, look under the drop down for

Target branch.
• If you do not see an entry for the branch you want to merge it indicates that no merge

relationship exists between these branches. In this case you must perform a baseless
merge.

Step 2. Perform a Baseless Merge By Using Tf.exe
In this step you use the Team Foundation Server command line tool Tf.exe to perform a
baseless merge.

To perform a baseless merge:

1. Set the Workspace for both branches by performing a get latest operation on the

branches to be merged.
1.1. Open Source Code Explorer.
1.2. Right-click the folder for the first branch to be merged and click Get Latest

Version.
1.3. Repeat the previous step for the second branch to be merged.

Note that if you do not have a workspace mapped Visual Studio prompts you to select
a folder on your local drive.

2. Open a Visual Studio Command Window.
3. Run the following Tf.exe command from the command line.

Tf merge /baseless <<source path>> <<target path>> /recursive

Example

Tf merge /baseless c:\data\proj1 c:\data proj2 /recursive

If you need to merge specific versions of the code changes you can use the version switch
with Tf.exe as follows

tf merge /baseless <<source path>> <<target path>> / recursive /version:<<from
Changeset>>~<<to Changeset>>

Example

tf merge /baseless c:\data\proj1 c:\data\proj2 /recursive /version:C123~C125

Step 3. Resolve Merge Conflicts
In this step you resolve conflicts that might occur when performing a baseless merge.
Once you have run the Tf.exe command it display a Resolve Conflicts dialog box with a
list of the files with conflicts.

To resolve merge conflicts
1. Select each file and click Resolve.
2. In the Resolve version conflict dialog box, if there are no content changes choose the

Keep changes in the target branch resolution option and click OK.
3. If there are content changes, select Merge changes in merge tool resolution option

and click OK.
4. In the merge tool click the conflict regions in the upper panes or type in the lower

pane to apply change for each conflicting line.
5. Once you have applied changes for all the conflicts, click OK in the merge tool.
6. Once all the conflicts are resolved click Close.

Step 4. Check-in the Merged Changes
In this step you check-in the baseless merged changes

To check-in merged changes:

1. Open Source Code Explorer.
2. Right-click the target folder in which you have merged the changes and click Check-

in pending changes.
3. In the Check-In Source Files dialog box, ensure that all the files to be checked in are

selected.
4. Click Check In.

Additional Resources
• To learn how to merge files and folders, see How to: Merge Files and Folders:

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
• To learn more about baseless merge, see the /baseless option in “Merge Command”:

http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
• For more information about other merging options please see "Merge Command" at

http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
• Team Foundation Server Branching Guidance:

http://www.CodePlex.com/BranchingGuidance

http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bd6dxhfy(VS.80).aspx
http://www.codeplex.com/BranchingGuidance

How To: Setup a Continuous Integration Build with
Visual Studio Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
The Team Foundation Server 2005 does not provide CI solution out of box, but does
provide the framework for you to implement your own CI build solution. This How To
shows you, how to setup a continuous integration build with Team Foundation Server
2005, using the solution provided by the Visual Studio Team System team. The solution
installs a Web service running under the account which has access to the TFS server; you
have to register the web service for CheckinEevnts. So whenever a checkin happens, the
web service initiates a Team Build.

Contents
• Objectives
• Overview
• Summary of Steps
• Before You Begin
• Step 1 - Create and test your build
• Step 2 - Install the Continuous Integration Add On
• Step 3 - Configure the Continuous Integration Add On
• Step 4 - Register for CheckinEvent
• Step 5 - Test the continuous integration build
• Step 6 - Set up email alerts
• Additional Resources

Objectives
• Learn what Continuous Integration build is.
• Learn to setup Continuous Integration build

Overview
Developers always need continuous feedback about the quality of the checkins they make,
especially whether their changes are breaking with respect to changes made by other
developers. The earlier the feedback the better, it gives developers quick chance of fixing
the code, thus unblocking other developers / testers and improving productivity of
everyone on the team.

This is where Continuous Integration build type comes into the picture. It is the process
of creating builds whenever a developer checks-in the code into Source Control. The CI
builds quick feedback to the developers; additionally you can configure your CI builds

for quality gates thus ensuring the build quality all the time. The CI build can cause
bottlenecks and put developers code at risk of losing as they cannot check-in the partially
completed code.

Summary of Steps
• Step 1 - Create and test your build
• Step 2 - Install the Continuous Integration Add On
• Step 3 - Configure the Continuous Integration Add On
• Step 4 - Register for CeckinEvent
• Step 5 - Test the continuous integration build
• Step 6 - Set up email alerts

Before You Begin
Make sure the account that runs your build service has the following permission in Team
Foundation Server:
• Permissions - Start a build = Allow

Step 1 - Create and test your build
In this step you create a test CI build and make sure the team build works from within
Visual Studio IDE. If it doesn't, then fix it before moving on.

1. Create a Windows Form project which you can use for testing the build.
2. Build the project and make sure that it is working correctly.
3. Check-in your project into source control
4. Create team build

• In Team Explorer, right-click Team Builds, click New Team Build Type
• Complete the self explanatory Team Build Type Creation Wizard

5. Verify that the team build is working
• In Team Explorer, double click the Team Build Project you created
• From the Build menu of Visual Studio instance, click Build Team Project

<<Your Team Build Name>>
• Confirm the correct build type is selected and click the Build button

6. Review the build output and make sure that there are no errors in the build process

Important – Make sure your build services account (TFSService), has Full Control
permission to the shared folder for the drops, specified in the Team Build Type Wizard.

Step 2 - Install the Continuous Integration add on
In this step we are going to install the solution provided by Visual Studio Team System
team for setting up the CI build. The detailed information about the solution is available
at http://msdn2.microsoft.com/en-us/library/ms364045(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms364045(VS.80).aspx

1. Install the solution on your TFS server from following location -
http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-
0e81d3de2482/ci.msi

2. Make sure you choose “Team Foundation Server” site on the second page of the
installer wizard.

3. The setup installation creates a virtual directory underneath the root of the
application-tier server for Team Foundation Server. This should be an IIS Web site
called "Team Foundation Server" on port 8080.

Step 3 - Configure the Continuous Integration Add On
In this step you will configure the Continuous Integration settings to specify the project to
be built, build machine to be used, and the team build type to be used.
1. Make sure that the virtual root runs in the "TfsAppPool" application pool

• Open IIS manager by clicking Start and then Administrative Tools, finally
select the IIS Manager

• Under the Web Sites expand the Team Foundation Server web site.
• Right click on the CI Web Application and make sure Application Pool is

set to TfsAppPool.
2. Configuring Continuous Integration Settings

• Open the CI Web Application web.config file located at C:\Program
Files\Microsoft Visual Studio 2005 Team Foundation Server\Web
Services\CI\

• Set the following properties by adding a new key under <appsettings> node:
o TeamFoundationServer - —URL for the application tier in the

format http://machine:8080.
o TeamProject—team project for which you want to enable

continuous integration
o BuildType—build type to be used while creating continuous

integration builds. Typically this is configured just for builds. You
can also add a basic level of testing and static analysis.

o Build Machine—an optional parameter, use this to override the
default build machine specified in the build type

Here is the example of the configuration settings
….
<add key="1"
value="TeamServer=http://TFSRTM:8080;TeamProjectName=AdventureWorks;Bui
ldType=Test Build"/>
….

Step 4 - Register for CheckinEvent
In this step you will register for the CheckinEvent event using the bisubscribe tool
available with Team Foundation Server.
1. Open a command prompt and change to the following location C:\Program

Files\Microsoft Visual Studio 2005 Team Foundation Server\TF Setup\
2. Run the following command

http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-0e81d3de2482/ci.msi
http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-0e81d3de2482/ci.msi
http://machine:8080/

Bissubscribe /eventType CheckinEvent /address
http://TFSRTM:8080/ci/notify.asmx /deliveryType Soap /domain
http://TFSRTM:8080

3. If you get any errors or you want top confirm that you have registered correctly, do

the following.
• Open SQL Server Management Studio
• Open the tfsIntegration database
• Open tbl_subscription table

The table will consists all the events already subscribed and you can decide to
unsubscribe event if necessary, or you may find the CI solution is already subscribed to
the event.

Step 5 - Test the Continuous Integration Build
In this step you verify that the Continious Integration Build is working correctly.

1. Open the Windows Forms Application, created in Step 1
2. Make some nominal changes, ensuring that the build won’t break.
3. Check-in the code changes you made.
4. If you have access to the build machine open taskmanager look at CPU usage - it

should elevate soon after the checkin to indicate a build is occurring. If you look at
the process list you should see msbuild, csc, and/or aspnet_compiler using up cpu
cycles - this indicates the build is in progress.

5. Give the build time to run and then dbl-click on All Build Types in the Team
Explorer and look for the build after it completes.

Trouble shooting
In case the build does not show up in the build list, you can trouble shoot at follows
1. Make sure that the event is subscribed correctly, for more information see sub step 3

of Step 4.
2. Make sure that the CI Web Application’s web.config is configured correctly, for more

information see Step 3.
3. Make sure that the CI Web Application is running in the right context and has access

to the TFS server.
4. If the above is correct and still the build fails you can debug the CI Web Application

as follows.
• Create a new web site project
• Add an existing web site, select the CI Web Application from the local IIS
• Open notify.cs and set a breakpoint on Notify method
• Click the f5 to start debugging
• Make changes to Windows Forms test application and checkin the code in

source control.
o If breakpoint is not hit, the event is not being captured - try

subscribing again
o If breakpoint is hit, debug further.

o Be sure script debugging is enabled in IE (advanced options)

Step 6. Setup email alerts
In this step you will setup and email alert for build completion, so that the concerned
parties are informed.
1. Right click the relevant team project in team explorer
2. Select Project Alerts
3. Check 'A build completes' option and enter email address for notification

Additional Resources
• Continuous Integration Using Team Foundation Build

http://msdn2.microsoft.com/en-us/library/ms364045(VS.80).aspx
• The Visual Studio Team System CI solution MSI -

http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-
0e81d3de2482/ci.msi

• Agile Dev Article -
http://msdn.microsoft.com/msdnmag/issues/06/03/TeamSystem/default.aspx

http://msdn2.microsoft.com/en-us/library/ms364045(VS.80).aspx
http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-0e81d3de2482/ci.msi
http://download.microsoft.com/download/6/5/e/65e300ce-22fc-4988-97de-0e81d3de2482/ci.msi
http://msdn.microsoft.com/msdnmag/issues/06/03/TeamSystem/default.aspx

How To: Setup a Scheduled Build with Visual Studio
Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
The Team Foundation Server 2005 does not provide Scheduled Build feature out of box,
however you can use the TFSBuild command to implement your own Scheduled builds.
This How To shows you, how to setup a scheduled build with Team Foundation Server
2005, using TFSBuild command and the Windows Task scheduler.

Contents
• Objectives
• Overview
• Summary of Steps
• Before You Begin
• Step 1 - Create and Test the build
• Step 2 - Create the TFSBuild command line
• Step 3 - Test the TFSBuild command line
• Step 4 - Create a batch file
• Step 5 - Test the batch file
• Step 6 - Add a scheduled task
• Step 7 - Test the scheduled task
• Additional Resources

Objectives
• Create a scheduled build using TFSBuild and Windows Scheduler

Overview
For development team it’s important to share the progress they have been making on the
project and get timely feedback. This can be achieved with scheduled builds. The source
code is complied and released on regular basis to other teams for example testers etc for
getting the feedback. The scheduled builds can be nightly, weekly, fortnightly or monthly
depending upon the project size and requirements.

Team Build feature in Team Foundation Server does not have support scheduled builds
out of box. However, it does provide TFSBuild command utility start team-builds from
command line. Any scheduler like the Windows Task Scheduler can be used to run the
TFSBuild command utility to start builds at predetermined time.

Summary of Steps:
• Step 1 - Create and Test the build
• Step 2 - Create the TFSBuild command line
• Step 3 - Test the TFSBuild command line
• Step 4 - Create a batch file
• Step 5 - Test the batch file
• Step 6 - Add a scheduled task
• Step 7 - Test the scheduled task

Before You Begin
Make sure the account that runs your build service has the following permission in Team
Foundation Server:
• Permissions - Start a build = Allow

Step 1 - Create and Test the build
In this step you create a test scheduled build and make sure the team-build works from
within Visual Studio IDE. If it doesn't, then fix it before moving on.

1. Create a Windows Form project which you can use for testing the build.
2. Build the project and make sure that it is working correctly.
3. Check-in your project into source control
4. Create team build

• In Team Explorer, right-click Team Builds, click New Team Build Type
• Complete the self explanatory Team Build Type Creation Wizard

5. Verify that the team build is working
• In Team Explorer, double click the Team Build Project you created
• From the Build menu of Visual Studio instance, click Build Team Project

<<Your Team Build Name>>
• Confirm the correct build type is selected and click the Build button

6. Review the build output and make sure that there are no errors in the build process

Important – Make sure your build services account (TFSService), has Full Control
permission to the shared folder for the drops, specified in the Team Build Type Wizard.

Step 2 - Create the TFSBuild command line
In this step you create a command for the TFSBuild utility for starting a build.
1. The TFSBuild command utility needs number of parameters to start a build, first you

need to determine the parameters to be used.
• Team Foundation Server – The Team Foundation server URL where the

solutions being built are checked in
• Team Project – It’s the name of the team project which you want to build.
• Build Type – It’s the Build Type which you have created using the build type

wizard.

• Build Machine – It’s the name of the build server which you want to use for
building your project. Its an optional parameter, by default it uses the build
server specified in the team build type.

• Build Directory – It’s the path to the directory where the build occurs. Its an
optional parameter, by default it uses the path specified in the tem build type.

2. The build command created is as follows
TfsBuild start <<TeamFoundationServer>> <<TeamProject>>
<<BuidlTypeName>>

If you plan to override the build machine name and build directory path specified while
creating the build type, here is the command created
TfsBuild start <<TeamFoundationServer>> <<TeamProject>>
<<BuidlTypeName>> /m:<<MachineName>> /d:<<BuildDirectory>>

Step 3 - Test the TFSBuild command line
In this step you test that the TFS command is working correctly.
1. Open the visual studio command prompt
2. Type the TfsBuild command as created in Step 2
3. Review the output and make sure that the build works correctly.

Step 4 - Create a batch file
In this step you will create a batch file which will be sued for scheduling the builds
1. Open notepad and type following command, please note we specify the full path to

the TFSBuild.exe file so that it can run from windows command prompt. Here is an
example of the command

"C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\TFSBuild" start
<<TeamFoundationServer>> <<TeamProject>> <<BuildTypeName>>

If you are overriding the build machine and build directory path then the command in the
batch file would look as follows

"C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\TFSBuild" start
<<TeamFoundationServer>> <<TeamProject>> <<BuildTypeName>>
/m:<<BuildMachineName>> /d:<<BuildDirectoryPath>>

2. Save the file as a batch file for example batchbuild.bat
3. Place the file in a build scripts location in TFS server Source Control, for example

Main\Scripts

Step 5 - Test the batch file
 In this step you will verify that the batch file you have created works correctly.
1. Open a windows command prompt, not VS command prompt, because by default the

windows scheduler will run the batch file in windows command prompt.
2. Start the batch file on the command line.

3. Ensure that the build works correctly without any errors.

Step 6 - Add a scheduled task
In this step you will add a schedule task for running the build command at regular
intervals as suitable and required by your project.
1. Go to Start and then click Control Panel
2. Then select the Scheduled Tasks option and click Add Scheduled Tasks
3. On the Scheduled Task Wizard click Next.
4. Click Browse button and select the batch file you have created in Step 4
5. Type the name of the task.
6. Select the frequency with which you want to run the tasks, let’s say it’s Daily and

then click Next
7. Configure the Start time, exceptions and Start date and click Next.
8. Enter user name and password of an account with Start a build permissions and click

Next
9. Then click Finish.

Step 7. Test the scheduled task
In this step you verify that the scheduled task is running at the right time and the builds
work properly.
1. Wait for the time at which the scheduled task should execute. Or, Go to Start and

then click Control Panel
2. Then select Scheduled Tasks option, from the list right click on your scheduled task

and select Run.
3. You should see a command prompt appear and your build start.
4. If you do not have access to the build machine at the time the task should execute

you can check back later and see if a build has completed.
• In Team Explorer double click All Build Types.
• Look at the list of builds and see if a build completed at the time you

scheduled

Additional Resources
• For more information see, “How to: Configure a Scheduled Build (Command Line)

“ at http://msdn2.microsoft.com/en-us/library/ms181727(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181727(VS.80).aspx

How To: Structure Your ASP.NET Applications for Team
Foundation Server

Applies To
• Team Foundation Server
• Visual Studio Team System
• ASP.NET Applications

Summary
This How To shows you how to organize and structure your ASP.NET Web applications
for Team Foundation Server. It explains an appropriate source tree structure to use within
Team Foundation Server source control.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1. Create Local Folders for Your Web Project
• Step 2. Create a Blank Solution
• Step 3. Add a Web Site to Your Solution
• Step 4. Add a Class Library (Optional)
• Step 5. Check Your Solution Structure
• Step 6. Check Your Local Folder Structure
• Step 7. Add Your Solution to Source Control
• Shared Code Considerations
• Additional Resources

Objectives
• Learn how to structure an ASP.NET application in Team Foundation Server source

control.

Overview
This how to shows you how to build a source control folder structure that is appropriate
for ASP.NET Web applications. ASP.NET Web projects often include additional class
libraries so a structure is required to accommodate those also. Folders to maintain your
ASP.NET Web projects are located beneath a /Main/Source top level structure in source
control. This enables you to easily use additional Development and Maintenance folders
if you need to create branches for isolated development and for release maintenance. For
more information about creating this top level folder structure, see “How To: Structure
Your Source Control Folders.”

Summary of Steps
• Step 1. Create Local Folders for Your Web Project
• Step 2. Create a Blank Solution
• Step 3. Add a Web Site to Your Solution
• Step 4. Add a Class Library (Optional)
• Step 5. Check Your Solution Structure
• Step 6. Check Your Local Folder Structure
• Step 7. Add Your Solution to Source Control

Step 1. Create Local Folders for Your Web Project
In this step, you create an appropriate local folder structure on your development
computer for your Web project. To ensure a consistent approach for your team
development and to keep team projects well organized on your development computer,
you should keep your entire development source from all of the team projects you are
working on grouped together beneath a single root folder such as C:\DevProjects.

Create a top level folder such as C:\DevProjects.

Step 2. Create a Blank Solution
To create an ASP.NET Web Application, start by explicitly creating a Visual Studio
Solution (.sln) file and then add your Web site and any supplementary projects you might
need, such as class libraries. In the following steps, you create your solutions beneath a
top level C:\DevProjects folder

1. From the File menu, point to New and click Project.
2. Expand Other Project Types and select Visual Studio Solutions.
3. Select Blank Solution.
4. Name your solution MyWebAppSln.
5. Set the Location to C:\DevProjects and click OK.

This creates a C:\DevProjects\MyWebAppSln folder. Visual Studio adds the solution
(.sln) file and solution user options (.suo) file to this folder. Note that only the .sln file is
subsequently added to source control in Step 7.

Step 3. Add a Web Site to Your Solution
In this step, you add an ASP.NET Web site to your solution. The way you do this varies
slightly depending on whether you are creating a new file system-based Web site that
uses the Visual Studio development Web server or an HTTP Web site that uses IIS.

File System
To add a file system-based Web project to your solution:

1. In Solution Explorer, right click Solution MyWebAppSln, point to Add and click

New Web Site.

2. In the Add New Web Site dialog box, leave the Location as File System, and the
Language as Visual C#.

3. Set the Location directory to
C:\DevProjects\MyWebAppSln\Source\MyWebAppWeb.

4. Click OK to close the Add New Web Site dialog box.

Note that the “Web” suffix is used in this example to clearly denote the folder as a Web
site root folder.

HTTP
To create an HTTP-based ASP.NET Web site that uses IIS, start by explicitly creating
your virtual directory so that your Web site directory ends up in your defined location
rather than beneath \inetpub\wwwroot.

To make your Web site’s virtual directory:

1. Use Windows Explorer to browse to C:\DevProjects\MyWebAppSln\Source
2. Make a new folder beneath this location called MyWebAppWeb.
3. Right-click MyWebAppWeb and click Sharing and Security.
4. Click the Web Sharing tab.
5. Click Share this folder.
6. Leave the Alias as MyWebAppWeb, leave the default Access permissions and

Application permissions and click OK.
7. Click OK and OK again.

To add your Web site to your solution:

1. In Solution Explorer, right click Solution MyWebAppSln, point to Add and click

New Web Site.
2. In the Add New Web Site dialog box, set the Location to HTTP and leave the

Language as Visual C#.
3. Set the Location URL to http://localhost/MyWebAppWeb.
4. Click OK to close the Add New Web Site dialog box.

Visual Studio adds your Default.aspx, Default.aspx.cs files to the
C:\DevProjects\MyWebAppSln\Source\MyWebAppWeb folder and creates Bin and
App_Data child folders.

Step 4. Add a Class Library (Optional)
If your Web application requires additional class libraries, add them as follows:

1. In Solution Explorer, right-click your MyWebAppSln solution, point to Add and

click New Project.
2. Select Visual C# as the project type and Class Library as the template.
3. Type the name ClassLibrary, set the Location to

C:\DevProjects\MyWebAppSln\Source and click OK.

All new projects are added beneath the Source folder.

Step 5. Check Your Solution Structure
Use Solution Explorer to verify your solution structure. It should resemble the following:

Step 6. Check your Local Folder Structure
Use Windows Explorer to verify your local folder structure. It should resemble the
following:

Step 7. Add Your Solution to Source Control
In this step you add your solution to Team Foundation Server source control.

1. Right-click your solution and click Add Solution to Source Control.
2. In the Add Solution MyWebAppSln to Source Control dialog box, choose your

team project
3. In the dialog box, click Make New Folder, name the new folder as Main
4. Select the newly created Main folder and click Make New Folder, name the new

folder Source
5. Select the newly created Source folder and then click OK .
6. Check your source control folder structure by clicking Source Control within the

Team Explorer. It should resemble the following:

7. At this point you can view pending changes and check-in your solution source files to

the server. To do so, from the View Menu, point to Other Windows and click
Pending Changes. Select your project and source files to check-in, supply a check-in
comment and click Check In.

Shared Code Considerations
For ASP.NET Web applications that reference shared source code, you can consider the
following two main options:

• Reference the code from a shared location
• Branch the shared code

Reference the Code from a Shared Location
With this approach, you map the source from a shared location such as another team
project into the workspace on your development computer. This creates a configuration
that unifies the shared source from the shared location and your project code on your
development computer.

The advantage of this approach is any changes to the shared source are picked up every
time you retrieve the latest version of the source into your workspace. For example
consider a team project called Common that contains the shared source. To reference the
code from this location, you map both team projects to a common path location on your
development computer. For example:

• C:\DevProjects\MyWebAppSln\
• C:\DevProjects\SharedCommon\

The following workspace mappings are used:

Source Control Folder Local Folder
$/MyTeamProject1/Main/Source/MyWebAppApp C:\DevProjects\MyWebAppSln
$/MyTeamProject2/Main/Source/Common C:\DevProjects\Common

For more information see “Working with multiple team projects in Team Build” at
http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

Branch the Shared Code
With this approach, you branch the shared code from the common team project into your
team project. This also creates a configuration that unifies the source from the shared
location and your project.

The difference with this approach is that the shared source changes are picked up as part
of a merge process between the branches. This makes the decision to pick up changes in
the shared source much more explicit. You decide when to perform a merge to pick up
latest changes.

For example consider the team project called Common which contains shared source. To
branch the code from this location:

1. In Source Control Explorer, right-click the root folder of the Common team project.
2. Click Branch…
3. In the Branch dialog box, set the Target: to the root folder of the

$/MyTeamProject1/Main/Source/ team project and click OK.
4. Once the branch operation is completed do not forget to check-in the branched source

code.

Additional Resources
• Team Foundation Server Branching Guidance:

http://www.CodePlex.com/BranchingGuidance
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx
http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

How To: Structure Your Windows Applications for Visual
Studio Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To shows you how to organize and structure your Windows Form applications
for Team Foundation Server. It explains an appropriate source tree structure to use within
Team Foundation Server source control.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1. Create Local Folders for Your Windows Forms Project
• Step 2. Create a Blank Solution
• Step 3. Add a Windows Forms Project to Your Solution
• Step 4. Add a Control Library (Optional)
• Step 5. Add a Class Library (Optional)
• Step 6. Check Your Solution Structure
• Step 7. Check Your Local Folder Structure
• Step 8. Add Your Solution to Source Control
• Shared Code Consideration
• Complete Folder Structure
• Additional Resources

Objectives
• Learn how to structure a Win Forms application in Team Foundation Server source

control.

Overview
This how to shows you how to build a source control folder structure that is appropriate
for Windows Forms applications. Windows Forms projects often include additional class
and control libraries so a structure is required to accommodate those also. Folders to
maintain your Windows Forms projects are located beneath a /Main/Source top level
structure. This enables you to easily use additional Development and Maintenance
folders if you need to create branches for isolated development and for release
maintenance. For more information about creating this top level folder structure, see
“How To: Structure Your Source Control Folders.”

Summary of Steps
• Step 1. Create Local Folders for Your Windows Forms Project
• Step 2. Create a Blank Solution
• Step 3. Add a Windows Forms Project to Your Solution
• Step 4. Add a Control Library (Optional)
• Step 5. Add a Class Library (Optional)
• Step 6. Check Your Solution Structure
• Step 7. Check Your Local Folder Structure
• Step 8. Add Your Solution to Source Control

Step 1. Create Local Folders for Your Windows Forms
Project
In this step, you create an appropriate local folder structure on your development
computer for your Windows Forms project. To ensure a consistent approach for your
team development and to keep team projects well organized on your development
computer, you should keep your entire development source from all of the team projects
you are working on grouped together beneath a single root folder such as C:\DevProjects.

Create a top level folder such as C:\DevProjects.

Step 2. Create a Blank Solution
To create a Windows Forms Application, start by explicitly creating a Visual Studio
Solution (.sln) file and then add your Windows Forms project and any supplementary
projects you might need, such as class or control libraries. In the following steps, you
create your solutions beneath a top level C:\DevProjects

1. From the File menu, point to New and click Project.
2. Expand Other Project Types and select Visual Studio Solutions.
3. Select Blank Solution.
4. Name your solution MyApp.
5. Set the Location to C:\DevProjects and click OK.

This creates a C:\DevProjects\MyApp folder. Visual Studio adds the solution (.sln) file
and solution user options (.suo) file to this folder. Note that only the .sln file is
subsequently added to source control in Step 8.

Step 3. Add a Windows Forms Project to Your Solution
In this step you add a new Windows Forms project to your solution.

1. In Solution Explorer, right click Solution MyApp, point to Add and click New

Project….
2. In the Add New Project dialog box, select Visual C# as the project type and

Windows Application as the template.
3. Set the Location to C:\DevProjects\MyApp\Source directory.

4. Set the name of your project to MyWinFormApp.
5. Click OK to close the Add New Project dialog box and add your project.

Step 4. Add a Control Library (Optional)
If your Windows Forms application requires additional control libraries, add them as
follows:

1. In Solution Explorer, right-click your solution, point to Add and click New

Project….
2. In the Add New Project dialog box, select Visual C# as the project type and

Windows Control Library as the template.
3. Set the Location to C:\DevProjects\MyApp\Source directory.
4. Set the name of your Windows Control Library to ControlLibrary.
5. Click OK to close the Add New Project dialog box.

Step 5. Add a Class Library (Optional)
If your Windows Forms application requires additional class library projects, add them as
follows:

1. In Solution Explorer, right-click your solution, point to Add and click New

Project….
2. In the Add New Project dialog box, select Visual C# as the project type and Class

Library as the template.
3. Set the Location to C:\DevProjects\MyApp\Source directory.
4. Set the name of your Windows Class Library to ClassLibrary1
5. Click OK to close the Add New Project dialog box.

Step 6. Check Your Solution Structure
Use Solution Explorer to verify your solution structure. It should resemble the following:

Step 7. Check Your Local Folder Structure
Use Windows Explorer to verify your local folder structure. It should resemble the
following:

Step 8. Add Your Solution to Source Control
In this step you add your solution containing your Windows Form project and optional
class libraries and control libraries to Team Foundation Server source control.

1. Right-click your solution MyApp and click Add Solution to Source Control.

2. In the Add Solution MyApp to Source Control dialog box, choose your team
project.

3. In the dialog box, click Make New Folder, name the new folder as Main.
4. Select the newly created Main folder and click Make New Folder, name the new

folder Source.
5. Select the newly created Source folder and then click OK.
6. Check your source control folder structure by double-clicking Source Control within

the Team Explorer. This displays source control explorer. Your structure should
resemble the following:

7. At this point you can view pending changes and check-in your source files to the

server. To do so, from the View Menu, point to Other Windows and click Pending
Changes. Select your project and source files to check-in, supply a check-in comment
and click Check In.

Shared Code Considerations
For Windows Forms applications that reference shared source code, you can consider the
following two main options:

• Reference the code from a shared location
• Branch the shared code

Reference the Code from a Shared Location
With this approach, you map the source from a shared location such as another team
project into the workspace on your development computer. This creates a configuration
that unifies the shared source from the shared location and your project code on your
development computer.

The advantage of this approach is any changes to the shared source are picked up every
time you retrieve the latest version of the source into your workspace. For example
consider a team project called Common that contains the shared source. To reference the

code from this location, you map both team projects to a common path location on your
development computer. For example:

• C:\MyProjects\MyApp\
• C:\MyProjects\SharedCommon\

The following workspace mappings are used:

Source Control Folder Local Folder
$/MyTeamProject1/Main/Source/MyApp C:\DevProjects\MyApp
$/MyTeamProject2/Main/Source/Common C:\DevProjects\Common

For more information see “Working with multiple team projects in Team Build” at
http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

Branch the Shared Code
With this approach, you branch the shared code from the common team project into your
team project. This also creates a configuration that unifies the source from the shared
location and your project.

The difference with this approach is that the shared source changes are picked up as part
of a merge process between the branches. This makes the decision to pick up changes in
the shared source much more explicit. You decide when to perform a merge to pick up
latest changes.

For example consider the team project called Common which contains shared source. To
branch the code from this location:

1. In Source Control Explorer, right-click the root folder of the Common team project.
2. Click Branch…
3. In the Branch dialog box, set the Target: to the root folder of the

$/MyTeamProject1/Main/Source/ team project and click OK.
4. Once the branch operation is completed do not forget to check-in the branched source

code.

Complete Folder Structure
A more complete folder structure in source control showing additional folders for unit
tests, build output, documentation, build scripts and tests is shown here.

/Main Contains .sln files that span projects
 /Source
 /MyApp Contains MyApp.sln file
 /Source
 /MyWinFormApp Contains MyWinFormApp.csproj and forms
 /ControlLibrary Contains ControlLibrary.csproj and other

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

control class files
 /ClassLibrary1 Contains ClassLibrary1.csproj and other

class files
 /UnitTests
 /MyWinFormsAppTests Contains unit test project for MyWinFormsApp
 /ControlsLibraryTests Contains unit tests for ControlsLibrary
 /ClassLibrary1Tests Contains unit tests for ClassLibrary1
 /Build Contains build out put (binaries)
 /Docs Contains design docs etc
 /Script Contains build scripts, database scripts etc
 /Tests Container folder for tests

/FunctionalTests Contains functional test scripts and code
 /PerformanceTests Contains performance test scripts and code
 /SecurityTests Contains security test scripts and code

Additional Resources
• Team Foundation Server Branching Guidance:

http://www.CodePlex.com/BranchingGuidance
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

How To: Structure Your Source Control Folders in Visual
Studio Team Foundation Server

Applies To
• Visual Studio Team Foundation Server

Summary
This How To shows you how to structure your folders in Team Foundation Server by
using lessons learned in practice. The folder structure presented here is a starting point.
More important than the structure, is the rationale behind it. Use the rationale to help
evaluate an appropriate folder structure and folder naming convention for your own
scenario.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1. Create a workspace mapping
• Step 2. Create your Main folder
• Step 3. Create folders for your project artifacts
• Step 4. Add your solution to your source tree
• Step 5. Consider creating a branched Development folder for isolation
• Step 6. Consider creating a Maintenance folder for release builds you need to isolate
• Additional Resources

Objectives
• Learn how to structure and name your source control folders

Overview
This how to shows you how to build an appropriate source control folder structure that
you can use with most common project types. The folder structure presented in this How
To uses three top level folders:

• Main. This is the main root folder which acts as a container folder for your main

source tree together with accompanying project artifacts such as design
documentation, scripts, and test cases. The Main folder also contains your Visual
Studio Solution (.sln) files.

• Development. This is an optional root level folder if you need to create isolation for
features or teams. This folder is created by branching from Main.

• Maintenance. This is an optional root level folder for released builds that you need to
isolate for example for ongoing maintenance to a particular release.

The folder structure presented in this How To is summarized here:

/Main Can contain solution (.sln) files
 for solutions that span projects

/Source
 /MyApp1 Contains MyApp1.sln file
 /Source Contain folder for all source
 /ClassLibrary1 Contains ClassLibrary1.csproj
 /MyApp1Web Contains Default.aspx

/Build Contains build output (binaries)
 /Docs Contains product docs etc
 /Scripts Contains build scripts
 /Tests Container for tests

/Development
 /FeatureBranch1
 /Source
 /MyApp1
 /Source
 /MyApp1Web
 /ClassLibrary1
 /FeatureBranch2

/Maintenance

/Release1
 /Source

 /MyApp1
 /Source
 /MyApp1Web
 /ClassLibrary1

/Release 1.1
/Release 1.2

Remember that this folder structure is a starting point with a suggested set of folder
names. More important than the structure and naming convention is the rationale behind
it and the purpose of the different folders. For more information about the rationale for
this structure, see “Ch 5 – Defining Your Branching and Merging Strategy.”

Summary of Steps
• Step 1. Create a workspace mapping
• Step 2. Create your Main folder
• Step 3. Create folders for your project artifacts
• Step 4. Add your solution to your source tree
• Step 5. Consider creating a branched Development folder for isolation
• Step 6. Consider creating a Maintenance folder for release builds you need to isolate

Step 1. Create a Workspace Mapping
In this step you create a workspace mapping to define the mapping between the folder
structure on the TFS server and client. You need to do this so that you can create a source
tree structure. First the source tree structure is created in your workspace and then you
need to perform a check-in to your Team Foundation Server.

You can create a workspace mapping in one of two ways:

• Set the workspace mapping explicitly
• Perform a get operation on your team project.

To set a workspace mapping explicitly

1. In Visual Studio from the File menu, point to Source Control and then click

Workspaces.
2. In the Manage Workspaces dialog box, select your computer name and click Edit.
3. In the Edit Workspace dialog box, in the Working folders list, click Click here to

enter a new working folder.
4. Click the ellipsis button, select your team project for example MyTeamProject1,

and click OK.
5. Click the local folder cell to display another ellipsis button.
6. Click the ellipsis button beneath Local Folder and browse to and select the local

folder on your development computer where you want to locate your team project,
for example C:\DevProjects\MyTeamProject1.

7. Click OK and then OK again to close the Edit Workspace dialog box.
8. Click OK in response to the Microsoft Visual Studio message box that informs you

than one or more working folders have changed.
9. Click Close to close the Manage Workspaces dialog box.

To perform a Get operation on your team project

1. In Team Explorer, expand your team project node, for example MyTeamProject1.
2. Double click Source Control beneath your team project.
3. In Source Control Explorer, right-click the root folder MyTeamProject1 and click

Get Latest Version.
4. In the Browse For Folder dialog box select your local path, for example

C:\DevProjects\MyTeamProject1 and then click OK. This maps the team project
root folder within Team Foundation Server to a local path on your computer.

Step 2. Create Your Main Folder
Create a new root folder in your Team Project called Main. You use the Main folder as a
root level container folder for your source and other project artifacts. You can also use
the Main folder to store any Visual Studio solution (.sln) files that span multiple projects.
Solution files are also maintained in their own application folders lower in the tree
structure.

/Main

To create a Main folder:

1. From Team Explorer, expand your team project and double-click Source Control.
2. Select your Team Project root folder within Source Control Explorer.
3. In the right-hand pane, right-click and then click New Folder.
4. Type Main and press ENTER.

Step 3. Create Folders for Your Project Artifacts
Create folders beneath Main to hold your main source code tree and accompanying
artifacts such as builds, documentation, script files and tests.

/Main
 /Build
 /Docs
 /Scripts
 /Source
 /Tests

To create folders for your project assets:

1. Expand your team project and Select the Main folder in the left hand pane of Source

Control Explorer.
2. Right-click in the right-hand pane, click New Folder, type Build and then press

ENTER.
3. Repeat step 2 to create the remaining folders beneath Main.

Step 4. Add Your Solution to Your Source Tree
In this step, you add your Visual Studio solution (.sln), project (.vsproj, .vbproj) and
source files to your source tree in Team Foundation Source Control.

To add your solution to your source tree:

1. Open your solution by using Visual Studio.
2. Right-click your solution in Solution Explorer and click Add Solution to Source

Control.
3. If you have already established a workspace mapping the solution is added at this

point. Otherwise you are prompted to select your team project and target folder in
source control. In the Add Solution to Source Control dialog box, expand your
Team Project folder, expand Main and select Source.

4. Make sure that the correct Local Workspace is selected. This should be the same
workspace that you used while creating your folder structure in Team Foundation
Source control.

5. Click OK to add your solution to source control.

You source control folder structure should resemble the following:

/Main
 /Source
 /MyApp1
 /Source
 /MyApp1Web
 /ClassLibrary1

/Build
 /Docs
 /Scripts
 /Tests

For more information about how to setup an appropriate client-side folder structure, see:
• “How To: Structure Your Windows Applications for Team Foundation Server.”
• “How To: Structure Your ASP.NET Applications for Team Foundation Server.”

With Unit Tests
If your project also includes unit tests, consider the following folder structure to store
your unit tests separate from your main source folder.

/Main
 /Source
 /MyApp1
 /Source
 /MyApp1Web
 /ClassLibrary1
 /UnitTests

/Build
 /Docs
 /Scripts
 /Tests

Step 5. Consider Creating a Branched Development
Folder for Isolation
If you need to create isolation for features or teams, consider creating a Development
folder by branching from the Main folder. Note that you must check any pending
changes in before you can branch.

To create a branched Development folder:

1. Create a root level Development folder (as a sibling of Main).
2. Create a sub folder called FeatureBranch1.
3. Select the $/TeamProject/Main/Source folder, right-click and click Branch.

Note: If Branch is grayed out, make sure you have checked in any pending changes.
4. In the Branch dialog box, click Browse and select

MyTeamProject/Development/FeatureBranch1 and click OK.
5. Click OK to create the branch.
6. Check-in your pending changes to push them to the server.

Your new folder structure in Source Control should resemble the sample one shown here.

/Development
 /FeatureBranch1
 /Source
 /MyApp1
 /Source
 /MyApp1Web
 /ClassLibrary1
 /FeatureBranch2

/Main
 /Build
 /Docs
 /Scripts
 /Source
 /Tests

Step 6. Consider Creating a Maintenance Folder for
Release Builds You Need to Isolate
If you need to perform maintenance on a build, while continuing development, consider
creating a Maintenance folder. Beneath this folder you can create multiple sub folders,
one per release.

To create a branched Maintenance folder:

1. Create a root level Maintenance folder (as a sibling of Main and Development).
2. Create a sub folder called Release1.
3. Select the $/TeamProject/Development/Source folder, right-click and click Branch.

Note: If Branch is grayed out, make sure you have checked in any pending changes.
4. In the Branch dialog box, click Browse and select

$/TeamProject/Maintenance/Release1 and click OK.
5. Click OK to create the branch.

Your new folder structure in Source Control should resemble the sample one shown here.

/Maintenance

/Release1
 /Source

 /MyApp1

 /Source
 /MyApp1Web
 /ClassLibrary1

/Release 1.1
/Release 1.2

Additional Considerations
• Do not branch unless you need to. You can label releases and branch at a later time if

you need isolation.
• The above folder structure is ideally suited to scenarios where your project consists of

one Visual Studio solution (.sln) file containing all of your project files. In this
scenario, the Main folder contains the .sln file and you have one sub folder for each
project file (.vsproj, .vbproj). In the above example project folders are represented by
MyApp1, MyApp2 etc. You can also use the above approach for a single project file,
for example if you use a single project, with no solution file.

• For multi-solution scenarios, you can locate multiple .sln files in the Main folder.

Additional Resources
• Team Foundation Server Branching Guidance:

http://www.CodePlex.com/BranchingGuidance
• For more information on creating a workspace, see “How to: Create a Workspace”:

http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

	CoverPage
	Title
	Copyrights Page
	Introduction
	Introduction
	Team Development
	Scope of This Guide
	Why We Wrote This Guide
	Who Should Read This Guide
	How To Use This Guide
	Organization of This Guide
	Parts
	Guidelines
	Practices
	Questions and Answers
	Resources
	“How To” Articles

	Feedback and Support
	Feedback on the Guide
	Technical Support
	Community Support

	The Team Who Brought You This Guide
	Contributors and Reviewers

	Tell Us About Your Success

	Part I: Fundamentals
	Ch 01 - Introducing the Team Environment
	Chapter 1 - Introducing the Team Environment
	Objectives
	Overview
	How to Use This Chapter
	Logical Workflow of Team Foundation Server
	Logical Workflow of Development, Test and Production Environments
	Development Processes
	Test Processes

	Physical Environments of Development and Test
	Development Environment
	Test Environment

	Ch 02 - Team Foundation Server Architecture
	Chapter 2 - Team Foundation Server Architecture
	Objectives
	Overview
	How to Use This Chapter
	Team Foundation Server Architecture
	Client Tier
	Application Tier
	Team Foundation Data Services
	Team Foundation Integration Services

	Data Tier

	Deployment Topology
	Key Requirements
	Single-Server Deployment
	Dual-Server Deployment

	Part II: Source Control
	Ch 03 - Structuring Projects and Solutions in Source Control
	Chapter 3 - Structuring Projects and Solutions in Source Control
	Objectives
	Overview
	How to Use This Chapter

	Strategies for Solution and Project Structure
	Single Solution
	Partitioned Solution
	Multiple Solutions
	Large Project Considerations

	Ch 04 - Structuring Projects and Solutions in Team Foundation Source Control
	Chapter 4 - Structuring Projects and Solutions in Team Foundation Source Control
	Objectives
	Overview
	How to Use This Chapter
	Server-Side Structure
	Storing Unit Tests
	UnitTests as a Peer to the Source folder
	UnitTests in Each Project

	Storing Documents

	Client-Side Structure
	Branched Folders
	Workspaces Explained
	Creating a New Workspace Mapping
	Where Are Workspace Mappings Stored?

	What Files Should Be Version Controlled?
	What Files Should Not Be Source Controlled?
	Additional Resources

	Ch 05 - Defining Your Branching and Merging Strategy
	Chapter 5 - Defining Your Branching and Merging Strategy
	Objectives
	Overview
	How to Use This Chapter
	Scenarios for Branching and Merging
	Common Scenarios in Practice
	Example Folders and Their Purpose
	Key Notes

	Scenario 1: No Branches
	Scenario 2: Branch for Release
	Scenario 3: Branch for Maintenance
	Scenario 4: Branch for Feature
	Scenario 5: Branch for Team
	Physical Structure
	Logical Structure
	Release Process
	Isolated Development Process
	Branching Considerations
	Large Project Considerations
	Additional Resources

	Ch 06 - Managing Source Control Dependencies in Visual Studio Team System
	Chapter 6 - Managing Source Control Dependencies in Visual Studio Team System
	Objectives
	Overview
	How to Use This Chapter
	Scenarios and Solutions
	Referencing Assemblies Generated by Another Project in the Same Solution
	Referencing Assemblies Generated by Projects in a Separate Solution
	Referencing an Assembly From Another Team Project
	Referencing a 3rd Party Assembly

	Referencing Projects
	Branching
	Workspace Mapping

	Referencing Third Party Assemblies
	Branching
	Workspace Mapping

	Guidelines for Referencing Projects and Assemblies
	Use Project References Whenever Possible
	Use File References Only Where Necessary
	Use Copy Local = True for Project and File References
	Automated Dependency Tracking

	Referencing Web Services
	Use Dynamic URLs When Referencing Web Services
	How to Use Dynamic URLs and a User Configuration File

	Referencing Databases
	How to Use User Configuration Files for Database Connection Strings

	Additional Resources

	Part III: Builds
	Ch 07 - Team Build Explained
	Chapter 7 - Team Build Explained
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Physical Architecture
	Logical Workflow
	Key Points
	How Team Build Works

	How to Think About Builds
	Consider Your Build Consumers
	Review Solution Scenarios
	Scheduled Builds
	Continuous Integration Build
	Gated Check-ins

	Understand Common Stumbling Blocks

	Scheduled Build
	Continuous Integration Build
	Large Project Considerations
	Build Customization
	Customize the Build Number
	Change Workspace Mapping
	Change Compilation Behavior

	Ch 08 - Setting Up Continuous Integration with Team Build
	Chapter 8 - Setting up Continuous Integration with Team Build
	Objectives
	Overview
	How to Use This Chapter

	Strategy for Continuous Integration Build
	Build on Each Check-in
	Rolling Build after Specific Number of Check-ins
	Rolling Build after Specific Time Interval
	Rolling Build after Specific Number of Check-ins or Time Interval
	Determining Your Rolling Build Interval

	Continuous Integration Build in Team Foundation Server

	Ch 09 - Setting Up Scheduled Builds with Team Build
	Chapter 9 - Setting up Scheduled Builds with Team Build
	Objectives
	Overview
	How to Use This Chapter
	Strategy for Scheduled Build
	Frequency of Scheduled Build
	Hourly Builds
	Nightly Builds
	Weekly Builds

	Scheduled Build in Team Foundation Server

	Part IV: Large Project Considerations
	CH 10 - Large Project Considerations
	Chapter 10 - Large Project Considerations
	Objectives
	Overview
	How to Use This Chapter
	Logical Workflow for Large Projects
	Source Control Considerations
	Branching and Merging Considerations
	Build Considerations

	Part V: Project Management
	Ch 11 - Project Management Explained
	Chapter 11 - Project Management Explained
	Objectives
	Overview
	How to Use This Chapter
	Project Management Summary
	Traditional Project Management Issues
	Project Management Features in Team Foundation Server
	Benefits

	Creating and Managing Projects with Team Foundation Server
	Strategies for Team Projects
	Team Project per Application
	Team Project per Release
	Team Project per Team

	Key Project Management Features in Team Foundation Server
	Process Management
	Process Templates
	MSF and CMMI Process Templates

	Security and Permissions
	Work Item Management
	MSF for Agile Software Development
	MSF for CMMI® Process Improvement
	Microsoft Project Integration
	Microsoft Excel Integration

	Progress and Reporting
	Additional Resources

	Ch 12 - Work Items Explained
	Chapter 12 - Work Items Explained
	Objectives
	Overview
	How to Use This Chapter
	Scenarios and Solutions
	Work Item Structure
	Work Item Types
	MSF Agile
	MSF CMMI

	Work Item Workflow
	Workflow Examples
	MSF CMMI Task
	MSF Agile Bug

	Customizing Work Items

	Ch 13 - MSF for Agile Software Development Projects
	Chapter 13 - MSF for Agile Software Development Projects
	Objectives
	Overview
	How to Use This Chapter
	Work Flow for MSF for Agile Software Development
	MSF for Agile Software Development Defaults
	Work Items
	Reports
	Groups and Permissions
	Source Control
	Areas and Iterations
	Examples of MSF for Agile Software Development
	Example 1: patterns & practices Teams
	New project through iteration 0
	Pre-Iteration Planning
	Iteration Planning
	During the Iteration
	After the Iteration

	Example 2: Field Customer Engagement
	New project through iteration 0
	During the Iteration
	After iteration 0

	Customizing MSF for Agile Software Development Process

	Part VI: Process Templates
	Ch 14 - Process Templates Explained
	Chapter 14 – Process Templates Explained
	Objectives
	Overview
	How to Use This Chapter
	MSF for Agile and CMMI Process Templates
	Customizing Process Guidance
	Process Template Architecture
	Process Template Plug-ins
	XML Process Definition Files
	New Team Project Wizard

	Customization Approach
	Common Customization

	How Does It Work

	Part VII: Reporting
	Ch 15 - Reporting Explained
	Chapter 15 - Reporting Explained
	Objectives
	Overview
	How to Use This Chapter
	Scenarios and Solutions
	MSF Reports
	Bugs
	Release Management
	Testing
	Work Items

	Customizing Reports
	More Information

	Physical Architecture
	Report System Components
	Server-Side Components
	Client-Side Components

	Additional Resources

	Part VIII: Setting Up and Maintaining the Team Environment
	Ch 17 - Providing Internet Access to Team Foundation Server
	Chapter 17 - Providing Internet Access to Team Foundation Server
	Objectives
	Overview
	How to Use This Chapter
	Scenarios
	Using a VPN Connection
	Using Basic or Digest Authentication
	Configuration Steps
	Configuring the ISAPI Filter

	Improving Remote Access Performance
	Additional Resources

	Ch 16 - Installation and Deployment
	Chapter 16 - Team Foundation Server Deployment
	Objectives
	Overview
	How to Use This Chapter
	TFS Architecture
	Deployment Scenarios
	Workgroup Deployment
	Deployment with Active Directory
	How to Think About Deployment
	Advantages of Single-Server Deployments
	Advantages of Dual-Server Deployments

	Single Server Deployment
	Dual Server Deployment
	Other Servers
	Build Server Installation
	Team Foundation Proxy Server

	Team Foundation Server Topologies
	Simple
	Moderate
	Complex
	Additional Resources

	Guidelines
	Source Control Guidelines

	Practices at a Glance
	Source Control Practices at a Glance
	Practices at a Glance: Source Control
	Index
	Accessing Version Control
	Administration
	Branch/Label/Merge
	Builds
	Check-In and Check-In Policies
	Checkout, Get and Lock
	Code Sharing
	Distributed/Remote Development
	Migration
	Project/Workspace Management
	Security
	Shelving

	Accessing Version Control
	How to Use Version Control from Non-Visual Studio Clients
	Additional Resources

	How to Automate Common Version Control Tasks
	Additional Resources

	How to Work Off-line
	Additional Resources

	Administration
	How to Add a New Developer to Your Project
	Additional Resources

	How to Remove a Developer Who Has Left Your Project
	Additional Resources

	How to Grant Permissions within Your Source Tree
	Additional Resources

	Branch/Label/Merge
	How to Use Labels
	Additional Resources

	How to Branch
	Additional Resources

	How to Plan Your Branching Structure
	Additional Resources

	 How to Use Branching to Support a Release
	Additional Resources

	How to Use Branching to Maintain a Previous Release
	Additional Resources

	How to use Branching to Stabilize Your Development and Build Process
	Additional Resources

	How to Use Branching to Stabilize Feature Development
	Additional Resources

	How to Use Branching to Stabilize Development Across Teams
	Additional Resources

	How to Use Branching to Isolate External Dependencies
	Additional Resources

	How to Retire an Old Release
	Additional Resources

	How to Perform a Merge
	Additional Resources

	How to Perform a Baseless Merge
	Additional Resources

	How to Resolve Merge Conflicts
	Additional Resources

	Builds
	How to Use TFS to Perform Continuous Integration Builds
	Additional Resources

	Check-In and Check-in Policies
	How to Work with Source Control Change Sets
	Additional Resources

	How to Enforce Coding Standards Prior to Check-in
	Additional Resources

	How to Override a Check-in Policy
	Additional Resources

	How to Undo a Check-in
	Additional Resources

	How to Resolve a Conflict
	Additional Resources

	How to Avoid Conflicts
	Additional Resources

	How to Create a Custom Check-in Policy
	Additional Resources

	Checkout, Get and Lock
	How to Synchronize Your Computer with TFS
	Additional Resources

	How to Prepare a File for Editing
	Additional Resources

	Code Sharing
	How to Share Code
	Additional Resources

	How to Manage Shared Binaries
	Additional Resources

	Distributed/Remote Development
	How to Access TFS over the Internet
	Additional Resources

	How to Support a Remote Office
	Additional Resources

	Migration
	How to Migrate Your Source from Visual SourceSafe
	Additional Resources

	How to Migrate Your Source from other Version Control Systems
	Additional Resources

	How to move Team Foundation Version Control to another server
	Additional Resources

	Project/Workspace Management
	How to Choose one Team Project vs Multiple Team Projects
	Additional Resources

	How to Organize Your Source Tree
	Additional Resources

	How to Define Workspace Mappings
	 Additional Resources

	How to use Workspaces to Isolate Code Changes on Your Computer
	 Additional Resources

	Security
	How to Secure the Channel Between Developer Workstation and TFS
	Additional Resources

	Shelving
	How to Use Shelving to Backup Pending Work
	Additional Resources

	How to use Shelving to Share Code with a Team Member
	Additional Resources

	Additional Resources

	Questions and Answers
	Source Control Questions and Answers
	Questions and Answers: Team Foundation Server Source Control and Versioning
	Index
	Accessing Version Control
	Administration
	Branch/Label/Merge
	Checkin and Checkin Policies
	Checkout, Get, and Lock
	Distributed/Remote Development
	Migration
	Project/Workspace Management
	Reporting
	Shelving

	Accessing Version Control
	What is the MSSCCI Provider and when is it used?
	What other IDEs support TFS?
	When should I use Team Foundation Power Tools?
	What are the most common version control extensibility scenarios?
	How do I work with version control from the command line?

	Administration
	How do I grant permissions on a file within a folder that has inherited permissions?
	What do I do, if a developer has left the project?
	How do I manage interns or other developers that I do not trust to check-in?
	How should I modify permissions once my application has shipped?

	Branch/Label/Merge
	When should I use labels?
	How do TFS labels differ from VSS labels?
	What is branching?
	When should I consider branching?
	What are the reasons to not branch?
	How do I use branching to release my application?
	How do I use branching to maintain my application?
	How do I use branching to reduce conflicts between teams?
	How do I use branching to reduce conflicts between features?
	What are proven practices for branch structure?
	What is the difference between branching and labeling?
	What is "path space" branching model?
	How does the TFS promotion model work?
	How do I merge two branches together?
	Can I merge across Team projects?
	What is a baseless merge?
	What is the code promotion model?
	What is the difference between the logical and physical view of branches?
	If I use the code promotion model, how often should I merge?

	Checkin and Checkin Policies
	What is a changeset?
	What's a check-in policy?
	When and how can I override check-in policy?
	How do I enforce a policy?
	How do I use a check-in verification system?
	If I modify file names or delete files on the disk does version control get out of sync?
	How does automatic conflict resolution work?
	How do I resolve conflicts manually?
	How do I avoid conflicts?

	Checkout, Get, and Lock
	How do I find out who was the last developer to modify a file?
	How does get work?
	What's the difference between shared and exclusive checkout?
	When should I use the lock command?
	What are the different lock types that TFS supports?

	Distributed/Remote Development
	How do I work off-line?
	How do I optimize for distributed team development?
	What is the version control proxy?
	How do I optimize version control proxy performance?

	Migration
	How is Team Foundation Server Version Control different than Visual SourceSafe?
	How is the checkout model different from Visual SourceSafe?
	How should I migrate my source from VSS to TFS?
	How should I migrate my source from other version control systems?

	Project/Workspace Management
	How should I manage my team projects?
	How should I manage dependencies between projects?
	What's a workspace?
	How do I use workspaces to isolate the work of a developer?
	What are proven practices for workspace mapping?
	When should I create a new Team Project versus create a new Branch?
	How should I manage source code that is shared across multiple projects?
	How should I manage binaries that are shared across multiple projects?
	How should I organize my source tree?

	Shelving
	What is shelving?
	What is a shelveset?
	When would I typically use shelving?
	How do I use shelving to back up my work?
	Why would I want to unshelve a shelveset?

	Additional Resources

	How Tos
	How To - Add a New Developer To Your Project in Visual Studio Team Foundation Server
	How To: Add a New Developer To Your Project in Visual Studio Team Foundation Server
	Applies To
	How to add a new developer to your project
	To grant access to the team project:
	To grant access to the Sharepoint project site:
	More Information
	Security Groups

	TFS Server Level
	Team Project Level

	How To - Automatically Run Code Analysis with Team Build in Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objective
	Overview
	Summary of Steps
	Before You Begin
	Step 1 – Test the Build
	Step 2 – Turn Code Analysis on for the Build
	Step 3 – Test Code Analysis
	Additional Resources

	How To - Create a Custom Report for Visual Studio Team Foundation Server
	How To: Create a Custom Report for Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Before You Begin
	Step 1 - Create a new reporting project
	Step 2 - Create the data sources
	Step 3 - Create a new report in your project
	Step 4 – Modify the report
	Step 5 - Deploy the report to your Team Foundation Server
	Step 6 – Test the report
	Additional Resources

	How To - Create a Risk Over Time Report for Visual Studio Team Foundation Server
	How To: Create a Risk Over Time Report for Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Before You Begin
	Step 1 - Create a new reporting project
	Step 2 - Create the data sources
	Step 3 - Create a new report in your project
	Step 4 – Modify the report
	Step 5 - Deploy the report to your Team Foundation Server
	Step 6 – Test the report
	Additional Resources

	How To - Create Custom Check-in Policies in Visual Studio Team Foundation Server
	How To: Step Through Creating a Custom Check-in Policy for Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Before You Begin
	Summary of Steps
	Step 1. Create and Build a Custom Policy Class
	Step 2. Register the Custom Policy in the Windows Registry
	Step 3. Apply the Custom Policy
	Step 4. Validate the Custom Policy
	Additional Resources

	How To - Creating Your Source Tree in Visual Studio Team Foundation Server
	How To: Step Through Creating Your Source Tree in Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1. Create a New Team Project
	Step 2. Create a Workspace Mapping
	Step 3. Create Your Folder Structure in Source Control
	Step 4. Add Your Source Code to Your Source Tree
	Additional Resources

	How To - Customize a Process Template in Visual Studio Team Foundation Server
	How to: Customize the Process Template using Process Editor
	Applies To
	Summary
	Content
	Objective
	Overview
	Summary of Steps
	Step 1 – Install Process Editor
	Step 2 – Choose the Process Template
	MSF for Agile Software Development
	MSF for CMMI Process Improvement

	Step 3 – Download the Process Template
	Step 4 – Open the Process Template in Process Editor
	Step 5 – Modify Process Template Plug-ins Selection
	Step 6 – Modify Work Item Types
	Step 7 – Modify the Default Work Items
	Step 8 – Modify and Manage Queries
	Step 9 – Modify Areas and Iterations
	Step 10 – Modify Groups and Permissions
	Step 11 – Modify Source Control Settings
	Step 12 – Modify Project Portal
	Step 13 – Modify Reports
	Step 14 – Upload the Modified Process Template
	Additional Resources

	How To - Customize a Report in Visual Studio Team Foundation Server
	How To: Customize a Report in Visual StudioTeam Foundation Server
	Applies To
	Summary
	Contents
	Objective
	Overview
	Summary of Steps
	Before You Begin
	Step 1 - Create a new reporting project
	Step 2 - Export the report you want to customize
	Step 3 - Create the data sources
	Step 4 - Add the report to your project
	Step 5 - Modify the report
	Step 6 - Deploy the report to your Team Foundation Server
	Step 7 - Test the report
	Additional Resources

	How To - Manage Projects in Visual Studio Team Foundation Server
	How To: Manage Projects in Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objective
	Overview
	Summary of Steps
	Before You Begin
	Step 1 – Choose a Process Template
	Step 2 – Create Team Project
	Step 3 – Create Security Groups (Optional)
	Step 4 – Add Team Members in Team Foundation Server
	Step 5 – Determine Your Iteration Cycle
	Step 6 – Capture Your Project Scenarios in TFS
	Step 7 – Identify the Scenarios for the Iteration
	Step 8 – Define Your Quality of Service Requirements
	Step 9 – Plan Your Iteration
	Developer Tasks
	Test Tasks
	Others

	Step 10 – Monitor Progress
	Areas and Iteration Consideration
	Additional Resources

	How To - Migrate Source Code to Team Foundation Server from Visual Source Safe
	How To: Migrate Source Code to Visual Studio Team Foundation Server from Visual Source Safe
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Before You Begin
	Summary of Steps
	Step 1. Backup Your VSS Database
	Step 2. Analyze your VSS Database to Resolve Data Integrity Issues
	Step 3. Analyze Your Projects in VSS
	Step 4. Prepare to Migrate Your Projects
	Step 5: Migrate Your Projects
	Additional Considerations
	Additional Resources

	How To - Perform a Baseless Merge in Visual Studio Team Foundation Server
	How To: Perform a Baseless Merge in Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1. Evaluate if a Baseless Merge Is Needed
	Step 2. Perform a Baseless Merge By Using Tf.exe
	Step 3. Resolve Merge Conflicts
	Step 4. Check-in the Merged Changes
	Additional Resources

	How To - Setup a Continuous Integration Build in Visual Studio Team Foundation Server
	How To: Setup a Continuous Integration Build with Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Before You Begin
	Step 1 - Create and test your build
	Step 2 - Install the Continuous Integration add on
	Step 3 - Configure the Continuous Integration Add On
	Step 4 - Register for CheckinEvent
	Step 5 - Test the Continuous Integration Build
	Trouble shooting

	Step 6. Setup email alerts
	Additional Resources

	How To - Setup a Scheduled Build in Visual Studio Team Foundation Server
	How To: Setup a Scheduled Build with Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps:
	Before You Begin
	Step 1 - Create and Test the build
	Step 2 - Create the TFSBuild command line
	Step 3 - Test the TFSBuild command line
	Step 4 - Create a batch file
	Step 5 - Test the batch file
	Step 6 - Add a scheduled task
	Step 7. Test the scheduled task
	Additional Resources

	How To - Structure ASP.NET Applications in Visual Studio Team Foundation Server
	How To: Structure Your ASP.NET Applications for Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1. Create Local Folders for Your Web Project
	Step 2. Create a Blank Solution
	Step 3. Add a Web Site to Your Solution
	File System
	HTTP

	Step 4. Add a Class Library (Optional)
	Step 5. Check Your Solution Structure
	Step 6. Check your Local Folder Structure
	Step 7. Add Your Solution to Source Control
	Shared Code Considerations
	Reference the Code from a Shared Location
	Branch the Shared Code

	Additional Resources

	How To - Structure Windows Applications in Visual Studio Team Foundation Server
	How To: Structure Your Windows Applications for Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1. Create Local Folders for Your Windows Forms Project
	Step 2. Create a Blank Solution
	Step 3. Add a Windows Forms Project to Your Solution
	Step 4. Add a Control Library (Optional)
	Step 5. Add a Class Library (Optional)
	Step 6. Check Your Solution Structure
	Step 7. Check Your Local Folder Structure
	Step 8. Add Your Solution to Source Control
	Shared Code Considerations
	Reference the Code from a Shared Location
	Branch the Shared Code

	Complete Folder Structure
	Additional Resources

	How To - Structure Your Source Control Folders in in Visual Studio Team Foundation Server
	How To: Structure Your Source Control Folders in Visual Studio Team Foundation Server
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1. Create a Workspace Mapping
	Step 2. Create Your Main Folder
	Step 3. Create Folders for Your Project Artifacts
	Step 4. Add Your Solution to Your Source Tree
	With Unit Tests

	Step 5. Consider Creating a Branched Development Folder for Isolation
	Step 6. Consider Creating a Maintenance Folder for Release Builds You Need to Isolate
	Additional Considerations
	Additional Resources

